Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 264: 110349, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32364957

ABSTRACT

Biological invasions are one of the major threats to biodiversity at the global scale, causing numerous environmental impacts and having high direct and indirect costs associated with their management, control and eradication. In this work, we present a system-dynamic modelling approach for the biocontrol of the invasive plant species Alternanthera philoxeroides using its natural predator, Agasicles hygrophila, as a biocontrol agent. We have simulated different scenarios in the Finisterre region (Spain), where a single population of the invasive plant has been recently described. To assess the effectiveness of A. hygrophila as a biocontrol agent in the region, a population dynamic model was developed in order to include the life-cycle of both species, as well as the interaction among them. The results of the simulations indicate that the control of this new invasive plant is possible, as long as several releases of the biocontrol agent are made over time. The proposed model can support the control or even the eradication of the population of A. philoxeroides with a minimal impact on the environment. Additionally, the proposed framework also represents a versatile dynamic tool, adjustable to different local management specificities (objectives and parameters) and capable of responding under different contexts. Hence, this approach can be used to guide eradication efforts of new invasive species, to improve the applicability of early management measures as biocontrol, and to support decision-making by testing several alternative management scenarios.


Subject(s)
Amaranthaceae , Coleoptera , Animals , Introduced Species , Plants , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...