Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res ; 48(1): 60, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28982390

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of cats, and a sequela of systemic feline coronavirus (FCoV) infection. Mutations in the viral spike (S) gene have been associated with FCoVs found in tissues from cats with FIP, but not FCoVs found in faeces from healthy cats, and are implicated in monocyte/macrophage tropism and systemic spread. This study was designed to determine whether S gene mutation analysis can reliably diagnose FIP. Cats were categorised as with FIP (n = 57) or without FIP (n = 45) based on gross post-mortem and histopathological examination including immunohistochemistry for FCoV antigen. RNA was purified from available tissue, fluid and faeces. Reverse-transcriptase quantitative-PCR (RT-qPCR) was performed on all samples using FCoV-specific primers, followed by sequencing of a section of the S gene on RT-qPCR positive samples. Samples were available from a total of 102 cats. Tissue, fluid, and faecal samples from cats with FIP were more likely to be FCoV RT-qPCR-positive (90.4, 78.4 and 64.6% respectively) than those from cats without FIP (7.8, 2.1 and 20% respectively). Identification of S gene mutated FCoVs as an additional step to the detection of FCoV alone, only moderately increased specificity for tissue samples (from 92.6 to 94.6%) but specificity was unchanged for fluid samples (97.9%) for FIP diagnosis; however, sensitivity was markedly decreased for tissue (from 89.8 to 80.9%) and fluid samples (from 78.4 to 60%) for FIP diagnosis. These findings demonstrate that S gene mutation analysis in FCoVs does not substantially improve the ability to diagnose FIP as compared to detection of FCoV alone.


Subject(s)
Coronavirus, Feline/genetics , Feline Infectious Peritonitis/diagnosis , Spike Glycoprotein, Coronavirus/genetics , Animals , Antigens, Viral/genetics , Cats , Feces/virology , Feline Infectious Peritonitis/virology , Genes, Viral/genetics , Mutation/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary
2.
Mol Ther Methods Clin Dev ; 3: 16042, 2016.
Article in English | MEDLINE | ID: mdl-27408904

ABSTRACT

In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD.

3.
Mol Ther ; 21(4): 825-33, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23403494

ABSTRACT

Although RNA interference (RNAi) has become a ubiquitous laboratory tool since its discovery 12 years ago, in vivo delivery to selected cell types remains a major technical challenge. Here, we report the use of lentiviral vectors for long-term in vivo delivery of RNAi selectively to resident alveolar macrophages (AMs), key immune effector cells in the lung. We demonstrate the therapeutic potential of this approach by RNAi-based downregulation of p65 (RelA), a component of the pro-inflammatory transcriptional regulator, nuclear factor κB (NF-κB) and a key participant in lung disease pathogenesis. In vivo RNAi delivery results in decreased induction of NF-κB and downstream neutrophilic chemokines in transduced AMs as well as attenuated lung neutrophilia following stimulation with lipopolysaccharide (LPS). Through concurrent delivery of a novel lentiviral reporter vector (lenti-NF-κB-luc-GFP) we track in vivo expression of NF-κB target genes in real time, a critical step towards extending RNAi-based therapy to longstanding lung diseases. Application of this system reveals that resident AMs persist in the airspaces of mice following the resolution of LPS-induced inflammation, thus allowing these localized cells to be used as effective vehicles for prolonged RNAi delivery in disease settings.


Subject(s)
Lentivirus/genetics , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/metabolism , Macrophages/metabolism , Animals , Cells, Cultured , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Mice , NF-kappa B/genetics , RNA Interference/physiology , Transcription Factor RelA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...