Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stat Med ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800970

ABSTRACT

We propose a Bayesian model selection approach that allows medical practitioners to select among predictor variables while taking their respective costs into account. Medical procedures almost always incur costs in time and/or money. These costs might exceed their usefulness for modeling the outcome of interest. We develop Bayesian model selection that uses flexible model priors to penalize costly predictors a priori and select a subset of predictors useful relative to their costs. Our approach (i) gives the practitioner control over the magnitude of cost penalization, (ii) enables the prior to scale well with sample size, and (iii) enables the creation of our proposed inclusion path visualization, which can be used to make decisions about individual candidate predictors using both probabilistic and visual tools. We demonstrate the effectiveness of our inclusion path approach and the importance of being able to adjust the magnitude of the prior's cost penalization through a dataset pertaining to heart disease diagnosis in patients at the Cleveland Clinic Foundation, where several candidate predictors with various costs were recorded for patients, and through simulated data.

2.
Biometrics ; 79(4): 3266-3278, 2023 12.
Article in English | MEDLINE | ID: mdl-37365985

ABSTRACT

We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We consider covariance structures for the random effects that are widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs analytically, we approximate the integrated likelihood function using a pseudo-likelihood approach. Our Bayesian approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies with Poisson GLMMs with spatial random effects and overdispersion random effects show that our approach performs favorably when compared to widely used competing Bayesian methods including deviance information criterion and Watanabe-Akaike information criterion. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in the R package GLMMselect that is available on CRAN.


Subject(s)
Genome-Wide Association Study , Models, Statistical , Bayes Theorem , Likelihood Functions , Linear Models , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...