Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Artif Intell ; 7: 1366273, 2024.
Article in English | MEDLINE | ID: mdl-38525301

ABSTRACT

High-throughput sequencing has created an exponential increase in the amount of gene expression data, much of which is freely, publicly available in repositories such as NCBI's Gene Expression Omnibus (GEO). Querying this data for patterns such as similarity and distance, however, becomes increasingly challenging as the total amount of data increases. Furthermore, vectorization of the data is commonly required in Artificial Intelligence and Machine Learning (AI/ML) approaches. We present BioVDB, a vector database for storage and analysis of gene expression data, which enhances the potential for integrating biological studies with AI/ML tools. We used a previously developed approach called Automatic Label Extraction (ALE) to extract sample labels from metadata, including age, sex, and tissue/cell-line. BioVDB stores 438,562 samples from eight microarray GEO platforms. We show that it allows for efficient querying of data using similarity search, which can also be useful for identifying and inferring missing labels of samples, and for rapid similarity analysis.

2.
Biomolecules ; 13(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136563

ABSTRACT

The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400~2000 and 4~2000 cd.s/m2, respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.


Subject(s)
Electroretinography , Retina , Mice , Animals , Sphingosine-1-Phosphate Receptors/metabolism , Retina/metabolism , Signal Transduction , Mice, Knockout
3.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732206

ABSTRACT

The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400∼2000 and 4∼2,000 cd.s/m 2 respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.

4.
J Neuroinflammation ; 20(1): 188, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587511

ABSTRACT

BACKGROUND: Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. METHODS: Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. RESULTS: There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally and autosomally encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. CONCLUSIONS: These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.


Subject(s)
Alzheimer Disease , Microglia , Female , Male , Animals , Mice , Alzheimer Disease/genetics , Neuroinflammatory Diseases , Sex Characteristics , Gene Expression Profiling
6.
Geroscience ; 45(5): 3019-3043, 2023 10.
Article in English | MEDLINE | ID: mdl-37393197

ABSTRACT

Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.


Subject(s)
Alzheimer Disease , Microglia , Humans , Mice , Rats , Animals , Microglia/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Major Histocompatibility Complex , Aging/physiology , Brain/metabolism
7.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-36945372

ABSTRACT

Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m , H2-D1 , H2-K1 , H2-M3 , H2-Q6 , and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.

8.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36945656

ABSTRACT

Background: Microglia, the brain's principal immune cells, have been implicated in the pathogenesis of Alzheimer's disease (AD), a condition shown to affect more females than males. Although sex differences in microglial function and transcriptomic programming have been described across development and in disease models of AD, no studies have comprehensively identified the sex divergences that emerge in the aging mouse hippocampus. Further, existing models of AD generally develop pathology (amyloid plaques and tau tangles) early in life and fail to recapitulate the aged brain environment associated with late-onset AD. Here, we examined and compared transcriptomic and translatomic sex effects in young and old murine hippocampal microglia. Methods: Hippocampal tissue from C57BL6/N and microglial NuTRAP mice of both sexes were collected at young (5-6 month-old [mo]) and old (22-25 mo) ages. Cell sorting and affinity purification techniques were used to isolate the microglial transcriptome and translatome for RNA-sequencing and differential expression analyses. Flow cytometry, qPCR, and imaging approaches were used to confirm the transcriptomic and translatomic findings. Results: There were marginal sex differences identified in the young hippocampal microglia, with most differentially expressed genes (DEGs) restricted to the sex chromosomes. Both sex chromosomally-and autosomally-encoded sex differences emerged with aging. These sex DEGs identified at old age were primarily female-biased and enriched in senescent and disease-associated microglial signatures. Normalized gene expression values can be accessed through a searchable web interface ( https://neuroepigenomics.omrf.org/ ). Pathway analyses identified upstream regulators induced to a greater extent in females than in males, including inflammatory mediators IFNG, TNF, and IL1B, as well as AD-risk genes TREM2 and APP. Conclusions: These data suggest that female microglia adopt disease-associated and senescent phenotypes in the aging mouse hippocampus, even in the absence of disease pathology, to a greater extent than males. This sexually divergent microglial phenotype may explain the difference in susceptibility and disease progression in the case of AD pathology. Future studies will need to explore sex differences in microglial heterogeneity in response to AD pathology and determine how sex-specific regulators (i.e., sex chromosomal or hormonal) elicit these sex effects.

9.
Geroscience ; 45(4): 2337-2349, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36897526

ABSTRACT

17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17ß-estradiol, which is aligned with the sevenfold increase in serum 17ß-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.


Subject(s)
Estradiol , Feminization , Humans , Male , Mice , Animals , Macaca mulatta , Aging
10.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187520

ABSTRACT

DNA methylation data has been used to make "epigenetic clocks" which attempt to measure chronological and biological aging. These models rely on data derived from bisulfite-based measurements, which exploit a semi-selective deamination and a genomic reference to determine methylation states. Here, we demonstrate how another hallmark of aging, genomic instability, influences methylation measurements in both bisulfite sequencing and methylation arrays. We found that non-methylation factors lead to "pseudomethylation" signals that are both confounding of epigenetic clocks and uniquely age predictive. Quantifying these covariates in aging studies will be critical to building better clocks and designing appropriate studies of epigenetic aging.

12.
Mol Neurobiol ; 59(6): 3873-3887, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35426574

ABSTRACT

Hydroxychloroquine (HCQ) is an anti-malarial drug but also widely used to treat autoimmune diseases like arthritis and lupus. Although there have been multiple reports of the adverse effect of prolonged HCQ usage on the outer retina, leading to bull's-eye maculopathy, the effect of HCQ toxicity on the inner retina as well as on overall visual functions has not been explored in detail. Furthermore, lack of an established animal model of HCQ toxicity hinders our understanding of the underlying molecular mechanisms. Here, using a small clinical study, we confirmed the effect of HCQ toxicity on the inner retina, in particular the reduction in central inner retinal thickness, and established a mouse model of chronic HCQ toxicity that recapitulates the effects observed in human retina. Using the mouse model, we demonstrated that chronic HCQ toxicity results in loss of inner retinal neurons and retinal ganglion cells (RGC) and compromises visual functions. We further established that HCQ treatment prevents autophagosome-lysosome fusion and alters the sphingolipid homeostasis in mouse retina. Our results affirm the notion that HCQ treatment causes early damage to the inner retina and affects visual functions before leading to characteristic toxicity in the macular region of the outer retina, 'bull's-eye maculopathy.' We also provide insights into the underlying molecular mechanisms of HCQ retinal toxicity that may involve autophagy-lysosomal defects and alterations in sphingolipid metabolism.


Subject(s)
Antirheumatic Agents , Macular Degeneration , Retinal Diseases , Animals , Antirheumatic Agents/adverse effects , Autophagosomes , Hydroxychloroquine/adverse effects , Lysosomes , Mice , Retina , Retinal Diseases/chemically induced , Retinal Diseases/drug therapy , Sphingolipids , Tomography, Optical Coherence/methods
13.
Epigenetics ; 17(11): 1404-1418, 2022 11.
Article in English | MEDLINE | ID: mdl-35152835

ABSTRACT

Background Transcriptional correlation networks derived from publicly available gene expression microarrays have been previously shown to be predictive of known gene functions, but less is known about the predictive capacity of correlated DNA methylation at CpG sites. Guilt-by-association co-expression methods can adapted for use with DNA methylation when a representative methylation value is created for each gene. We examine how methylation compares to expression in predicting Gene Ontology terms using both co-methylation and traditional machine learning approaches across different types of representative methylation values per gene. Methods We perform guilt-by-association gene function prediction with a suite of models called Methylation Array Network Analysis, using a network of correlated methylation values derived from over 24,000 samples. In generating the correlation matrix, the performance of different methods of collapsing probe-level data effect on the resulting gene function predictions was compared, along with the use of different regions surrounding the gene of interest. Results Using mean comethylation of a given gene to its annotated term had an overall highest prediction macro-AUC of 0.60 using mean gene body methylation, across all Gene Ontology terms. This was increased using the logistic regression approach with the highest macro-AUC of 0.82 using mean gene body methylation, compared to the naive predictor of 0.72. Conclusion Genes correlated in their methylation state are functionally related. Genes clustered in co-methylation space were enriched for chromatin state, PRC2, immune response, and development-related terms.


Subject(s)
DNA Methylation , Gene Regulatory Networks , CpG Islands , Phenotype , Chromatin
14.
Aging Cell ; 20(11): e13492, 2021 11.
Article in English | MEDLINE | ID: mdl-34655509

ABSTRACT

Epigenetic alterations are a hallmark of aging and age-related diseases. Computational models using DNA methylation data can create "epigenetic clocks" which are proposed to reflect "biological" aging. Thus, it is important to understand the relationship between predictive clock sites and aging biology. To do this, we examined over 450,000 methylation sites from 9,699 samples. We found ~20% of the measured genomic cytosines can be used to make many different epigenetic clocks whose age prediction performance surpasses that of telomere length. Of these predictive sites, the average methylation change over a lifetime was small (~1.5%) and these sites were under-represented in canonical regions of epigenetic regulation. There was only a weak association between "accelerated" epigenetic aging and disease. We also compare tissue-specific and pan-tissue clock performance. This is critical to applying clocks both to new sample sets in basic research, as well as understanding if clinically available tissues will be feasible samples to evaluate "epigenetic aging" in unavailable tissues (e.g., brain). Despite the reproducible and accurate age predictions from DNA methylation data, these findings suggest they may have limited utility as currently designed in understanding the molecular biology of aging and may not be suitable as surrogate endpoints in studies of anti-aging interventions. Purpose-built clocks for specific tissues age ranges or phenotypes may perform better for their specific purpose. However, if purpose-built clocks are necessary for meaningful predictions, then the utility of clocks and their application in the field needs to be considered in that context.


Subject(s)
Aging/genetics , Biological Clocks/genetics , Epigenesis, Genetic , Epigenome , Adult , Aged , Aged, 80 and over , Aging/blood , Biomarkers , Brain/metabolism , DNA Methylation/genetics , Databases, Genetic , Epigenomics/methods , Female , Genetic Loci , Humans , Longevity/genetics , Male , Middle Aged
15.
Geroscience ; 43(2): 809-828, 2021 04.
Article in English | MEDLINE | ID: mdl-32761290

ABSTRACT

Loss of protein homeostasis is a hallmark of the aging process. We and others have previously shown that maintenance of proteostasis is a shared characteristic of slowed-aging models. Rapamycin (Rap) exerts sex-specific effects on murine lifespan, but the combination of Rap with the anti-hyperglycemic drug metformin (Rap + Met) equally increases male and female mouse median lifespan. In the current investigation, we compare the effects of short-term (8 weeks) Rap and Rap + Met treatments on bulk and individual protein synthesis in two key metabolic organs (the liver and skeletal muscle) of young genetically heterogeneous mice using deuterium oxide. We report for the first time distinct effects of Rap and Rap + Met treatments on bulk and individual protein synthesis in young mice. Although there were decreases in protein synthesis as assessed by bulk measurements, individual protein synthesis analyses demonstrate there were nearly as many proteins that increased synthesis as decreased synthesis rates. While we observed the established sex- and tissue-specific effects of Rap on protein synthesis, adding Met yielded more uniform effects between tissue and sex. These data offer mechanistic insight as to how Rap + Met may extend lifespan in both sexes while Rap does not.


Subject(s)
Metformin , Sirolimus , Animals , Female , Longevity , Male , Metformin/pharmacology , Mice , Protein Biosynthesis , Sex Characteristics , Sirolimus/pharmacology
16.
Commun Biol ; 3(1): 693, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214681

ABSTRACT

Epigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


Subject(s)
Astrocytes/metabolism , Epigenesis, Genetic , Microglia/metabolism , Transcriptome , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Astrocytes/drug effects , Cells, Cultured , Female , Gene Expression Regulation , Genetic Markers , Lipopolysaccharides/toxicity , Male , Mice , Microglia/drug effects , RNA-Seq , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
17.
BMC Bioinformatics ; 20(Suppl 2): 96, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30871469

ABSTRACT

BACKGROUND: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance. RESULTS: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts. CONCLUSIONS: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We've proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data.


Subject(s)
Metagenomics/methods , Microbiota/genetics , Humans
18.
Pharmacol Ther ; 195: 172-185, 2019 03.
Article in English | MEDLINE | ID: mdl-30419258

ABSTRACT

Recent research suggests that epigenetics, especially DNA methylation, plays a mechanistic role in aging. Epigenetic clocks, which measure changes in a few hundred specific CpG sites, can accurately predict chronological age in a variety of species, including humans. These clocks are currently the best biomarkers for predicting mortality in humans. Additionally, several studies have characterized the effects of aging across the methylome in a wide variety of tissues from humans and mice. A small fraction (~2%) of the CpG sites show age-related changes, either hypermethylation or hypomethylation with aging. Evaluation of non-CpG site methylation has only been examined in a few studies, with about ~0.5% of these sites showing a change with age. Therefore, while only a small fraction of cytosines in the genome show changes in DNA methylation with age, this represents 2 to 3 million cytosines in the genome. Importantly, the only study to compare the effect of aging on DNA methylation in male and female mice and humans found that >95% of the age-related changes in DNA methylation in the hippocampus were sexually divergent, i.e., the methylation did not differ between males and females at young age but age-related changes occurred in one sex but not the other. The age-related changes in DNA methylation tend to be enriched and under-represented in specific genomic contexts, with some commonalities between tissues and species that require further investigation. The strongest evidence that the age-related changes in DNA methylation play a role in aging comes from studies of anti-aging interventions (e.g., caloric restriction, dwarfism, and rapamycin treatment) in mice. These anti-aging interventions deaccelerate the epigenetic clocks and reverse/prevent 20 to 40% of the age-related changes in DNA methylation. It will be important in the future to demonstrate that at least some of the age-related changes in DNA methylation directly lead to alterations in the transcriptome of cells/tissues that could potentially contribute to aging.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Aging/genetics , Animals , Epigenomics , Humans
19.
Int J Mol Sci ; 19(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563056

ABSTRACT

Sphingosine 1-phosphate (S1P) signaling regulates numerous biological processes including neurogenesis, inflammation and neovascularization. However, little is known about the role of S1P signaling in the eye. In this study, we characterize two sphingosine kinases (SPHK1 and SPHK2), which phosphorylate sphingosine to S1P, and three S1P receptors (S1PR1, S1PR2 and S1PR3) in mouse and rat eyes. We evaluated sphingosine kinase and S1P receptor gene expression at the mRNA level in various rat tissues and rat retinas exposed to light-damage, whole mouse eyes, specific eye structures, and in developing retinas. Furthermore, we determined the localization of sphingosine kinases and S1P receptors in whole rat eyes by immunohistochemistry. Our results unveiled unique expression profiles for both sphingosine kinases and each receptor in ocular tissues. Furthermore, these kinases and S1P receptors are expressed in mammalian retinal cells and the expression of SPHK1, S1PR2 and S1PR3 increased immediately after light damage, which suggests a function in apoptosis and/or light stress responses in the eye. These findings have numerous implications for understanding the role of S1P signaling in the mechanisms of ocular diseases such as retinal inflammatory and degenerative diseases, neovascular eye diseases, glaucoma and corneal diseases.


Subject(s)
Eye Proteins/biosynthesis , Gene Expression Regulation/physiology , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Receptors, Lysosphingolipid/biosynthesis , Retina/metabolism , Animals , Cattle , Immunohistochemistry , Lysophospholipids/metabolism , Mice , Rats , Rats, Sprague-Dawley , Retina/cytology , Sphingosine/analogs & derivatives , Sphingosine/metabolism
20.
Geroscience ; 40(1): 11-29, 2018 02.
Article in English | MEDLINE | ID: mdl-29327208

ABSTRACT

As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.


Subject(s)
Aging/genetics , DNA Methylation/genetics , Epigenomics/methods , High-Throughput Nucleotide Sequencing/methods , Aging/physiology , Animals , Epigenesis, Genetic , Female , Humans , Male , Sensitivity and Specificity , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...