Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Endocrinol ; 21(7): 1603-16, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17456796

ABSTRACT

Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which cafestol elevates serum lipid levels. Changes in several lipid parameters were observed in cafestol-treated APOE3Leiden mice, including a significant increase in serum triglyceride levels. Microarray analysis of these mice identified alterations in hepatic expression of genes involved in lipid metabolism and detoxification, many of which are regulated by the nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR). Further studies demonstrate that cafestol is an agonist ligand for FXR and PXR, and that cafestol down-regulates expression of the bile acid homeostatic genes CYP7A1, sterol 12alpha-hydroxylase, and Na(+)-taurocholate cotransporting polypeptide in the liver of wild-type but not FXR null mice. Cafestol did not affect genes known to be up-regulated by FXR in the liver of wild-type mice, but did increase expression of the positive FXR-target genes intestinal bile acid-binding protein and fibroblast growth factor 15 (FGF15) in the intestine. Because FGF15 has recently been shown to function in an enterohepatic regulatory pathway to repress liver expression of bile acid homeostatic genes, its direct induction in the gut may account for indirect effects of cafestol on liver gene expression. PXR-dependent gene regulation of cytochrome P450 3A11 and other targets by cafestol was also only seen in the intestine. Using a double FXR/PXR knockout mouse model, we found that both receptors contribute to the cafestol-dependent induction of intestinal FGF15 gene expression. In conclusion, cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis.


Subject(s)
DNA-Binding Proteins/agonists , Diterpenes/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Steroid/agonists , Transcription Factors/agonists , Animals , Apolipoprotein E3/genetics , Cholesterol 7-alpha-Hydroxylase/genetics , Coffee/chemistry , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diterpenes/adverse effects , Diterpenes/metabolism , Female , Fibroblast Growth Factors/genetics , Humans , Hypercholesterolemia/chemically induced , In Vitro Techniques , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Biological , Pregnane X Receptor , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/deficiency , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/drug effects
2.
Circulation ; 111(25): 3443-52, 2005 Jun 28.
Article in English | MEDLINE | ID: mdl-15967845

ABSTRACT

BACKGROUND: Pathological aspects of atherosclerosis are well described, but gene profiles during atherosclerotic plaque progression are largely unidentified. METHODS AND RESULTS: Microarray analysis was performed on mRNA of aortic arches of ApoE-/- mice fed normal chow (NC group) or Western-type diet (WD group) for 3, 4.5, and 6 months. Of 10 176 reporters, 387 were differentially (>2x) expressed in at least 1 group compared with a common reference (ApoE-/-, 3- month NC group). The number of differentially expressed genes increased during plaque progression. Time-related expression clustering and functional grouping of differentially expressed genes suggested important functions for genes involved in inflammation (especially the small inducible cytokines monocyte chemoattractant protein [MCP]-1, MCP-5, macrophage inflammatory protein [MIP]-1alpha, MIP-1beta, MIP-2, and fractalkine) and matrix degradation (cathepsin-S, matrix metalloproteinase-2/12). Validation experiments focused on the gene cluster of small inducible cytokines. Real-time polymerase chain reaction revealed a plaque progression-dependent increase in mRNA levels of MCP-1, MCP-5, MIP-1alpha, and MIP-1beta. ELISA for MCP-1 and MCP-5 showed similar results. Immunohistochemistry for MCP-1, MCP-5, and MIP-1alpha located their expression to plaque macrophages. An inhibiting antibody for MCP-1 and MCP-5 (11K2) was designed and administered to ApoE-/- mice for 12 weeks starting at the age of 5 or 17 weeks. 11K2 treatment reduced plaque area and macrophage and CD45+ cell content and increased collagen content, thereby inducing a stable plaque phenotype. CONCLUSIONS: Gene profiling of atherosclerotic plaque progression in ApoE-/- mice revealed upregulation of the gene cluster of small inducible cytokines. Further expression and in vivo validation studies showed that this gene cluster mediates plaque progression and stability.


Subject(s)
Atherosclerosis/genetics , Chemokines/physiology , Gene Expression Profiling , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Aorta, Thoracic , Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Chemokine CCL2/immunology , Chemokine CCL8 , Chemokines/genetics , Cluster Analysis , Disease Progression , Extracellular Matrix/metabolism , Inflammation/genetics , Male , Mice , Mice, Knockout , Monocyte Chemoattractant Proteins/immunology , Monocyte Chemoattractant Proteins/physiology , Peptide Hydrolases/genetics , RNA, Messenger/analysis , Time Factors
3.
Circ Res ; 95(5): 515-22, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15284191

ABSTRACT

Cardiac hypertrophy can lead to heart failure (HF), but it is unpredictable which hypertrophied myocardium will progress to HF. We surmised that apart from hypertrophy-related genes, failure-related genes are expressed before the onset of failure, permitting molecular prediction of HF. Hearts from hypertensive homozygous renin-overexpressing (Ren-2) rats that had progressed to early HF were compared by microarray analysis to Ren-2 rats that had remained compensated. To identify which HF-related genes preceded failure, cardiac biopsy specimens were taken during compensated hypertrophy and we then monitored whether the rat progressed to HF or remained compensated. Among 48 genes overexpressed in failing hearts, we focused on thrombospondin-2 (TSP2). TSP2 was selectively overexpressed only in biopsy specimens from rats that later progressed to HF. Moreover, expression of TSP2 was increased in human hypertrophied hearts with decreased (0.19+/-0.01) versus normal ejection fraction (0.11+/-0.03 [arbitrary units]; P<0.05). Angiotensin II induced fatal cardiac rupture in 70% of TSP2 knockout mice, with cardiac failure in the surviving mice; this was not seen in wild-type mice. In TSP2 knockout mice, angiotensin II increased matrix metalloproteinase (MMP)-2 and MMP-9 activity by 120% and 390% compared with wild-type mice (P<0.05). In conclusion, we identify TSP2 as a crucial regulator of the integrity of the cardiac matrix that is necessary for the myocardium to cope with increased loading and that may function by its regulation of MMP activity. This suggests that expression of TSP2 marks an early-stage molecular program that is activated uniquely in hypertrophied hearts that are prone to fail.


Subject(s)
Cardiac Output, Low/etiology , Extracellular Matrix/metabolism , Hypertrophy, Left Ventricular/metabolism , Myocardium/metabolism , Thrombospondins/biosynthesis , Angiotensin II/antagonists & inhibitors , Angiotensin II/toxicity , Animals , Animals, Genetically Modified , Cardiac Output, Low/genetics , Cardiac Output, Low/metabolism , Cardiomyopathies/chemically induced , Collagenases/metabolism , Disease Progression , Enzyme Precursors/metabolism , Gelatinases/metabolism , Gene Expression , Gene Expression Profiling , Genetic Predisposition to Disease , Heart Rupture/chemically induced , Heart Rupture/pathology , Humans , Hypertension/complications , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/genetics , Matrix Metalloproteinase 9 , Metalloendopeptidases/metabolism , Mice , Mice, Knockout , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Renin/genetics , Stroke Volume , Thrombospondins/genetics , Thrombospondins/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...