Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Phys Rev E ; 109(2-1): 024314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491610

ABSTRACT

In many studies, it is common to use binary (i.e., unweighted) edges to examine networks of entities that are either adjacent or not adjacent. Researchers have generalized such binary networks to incorporate edge weights, which allow one to encode node-node interactions with heterogeneous intensities or frequencies (e.g., in transportation networks, supply chains, and social networks). Most such studies have considered real-valued weights, despite the fact that networks with complex weights arise in fields as diverse as quantum information, quantum chemistry, electrodynamics, rheology, and machine learning. Many of the standard network-science approaches in the study of classical systems rely on the real-valued nature of edge weights, so it is necessary to generalize them if one seeks to use them to analyze networks with complex edge weights. In this paper, we examine how standard network-analysis methods fail to capture structural features of networks with complex edge weights. We then generalize several network measures to the complex domain and show that random-walk centralities provide a useful approach to examine node importances in networks with complex weights.

2.
Nat Commun ; 15(1): 224, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172092

ABSTRACT

Researchers in many fields use networks to represent interactions between entities in complex systems. To study the large-scale behavior of complex systems, it is useful to examine mesoscale structures in networks as building blocks that influence such behavior. In this paper, we present an approach to describe low-rank mesoscale structures in networks. We find that many real-world networks possess a small set of latent motifs that effectively approximate most subgraphs at a fixed mesoscale. Such low-rank mesoscale structures allow one to reconstruct networks by approximating subgraphs of a network using combinations of latent motifs. Employing subgraph sampling and nonnegative matrix factorization enables the discovery of these latent motifs. The ability to encode and reconstruct networks using a small set of latent motifs has many applications in network analysis, including network comparison, network denoising, and edge inference.

3.
Chaos ; 33(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38085225

ABSTRACT

We study low-dimensional dynamics in a Kuramoto model with inertia and Hebbian learning. In this model, the coupling strength between oscillators depends on the phase differences between the oscillators and changes according to a Hebbian learning rule. We analyze the special case of two coupled oscillators, which yields a five-dimensional dynamical system that decouples into a two-dimensional longitudinal system and a three-dimensional transverse system. We readily write an exact solution of the longitudinal system, and we then focus our attention on the transverse system. We classify the stability of the transverse system's equilibrium points using linear stability analysis. We show that the transverse system is dissipative and that all of its trajectories are eventually confined to a bounded region. We compute Lyapunov exponents to infer the transverse system's possible limiting behaviors, and we demarcate the parameter regions of three qualitatively different behaviors. Using insights from our analysis of the low-dimensional dynamics, we examine the original high-dimensional system in a situation in which we draw the intrinsic frequencies of the oscillators from Gaussian distributions with different variances.

4.
Chaos ; 33(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37676112

ABSTRACT

The computational investigation of Fermi, Pasta, Ulam, and Tsingou (FPUT) of arrays of nonlinearly coupled oscillators has led to a wealth of studies in nonlinear dynamics. Most studies of oscillator arrays have considered homogeneous oscillators, even though there are inherent heterogeneities between individual oscillators in real-world arrays. Well-known FPUT phenomena, such as energy recurrence, can break down in such heterogeneous systems. In this paper, we present an approach-the use of structured heterogeneities-to recover recurrence in FPUT systems in the presence of oscillator heterogeneities. We examine oscillator variabilities in FPUT systems with cubic nonlinearities, and we demonstrate that centrosymmetry in oscillator arrays may be an important source of recurrence.

5.
Psychol Sci ; 34(6): 683-695, 2023 06.
Article in English | MEDLINE | ID: mdl-37027033

ABSTRACT

Loneliness is detrimental to well-being and is often accompanied by self-reported feelings of not being understood by other people. What contributes to such feelings in lonely people? We used functional MRI of 66 first-year university students to unobtrusively measure the relative alignment of people's mental processing of naturalistic stimuli and tested whether lonely people actually process the world in idiosyncratic ways. We found evidence for such idiosyncrasy: Lonely individuals' neural responses were dissimilar to those of their peers, particularly in regions of the default-mode network in which similar responses have been associated with shared perspectives and subjective understanding. These relationships persisted when we controlled for demographic similarities, objective social isolation, and individuals' friendships with each other. Our findings raise the possibility that being surrounded by people who see the world differently from oneself, even if one is friends with them, may be a risk factor for loneliness.


Subject(s)
Loneliness , Social Isolation , Humans , Emotions , Friends , Risk Factors
6.
Phys Rev E ; 105(5-2): 059902, 2022 May.
Article in English | MEDLINE | ID: mdl-35706326

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.100.062304.

7.
PLoS Comput Biol ; 18(5): e1010042, 2022 05.
Article in English | MEDLINE | ID: mdl-35584133

ABSTRACT

A major strategy to prevent the spread of COVID-19 is the limiting of in-person contacts. However, limiting contacts is impractical or impossible for the many disabled people who do not live in care facilities but still require caregivers to assist them with activities of daily living. We seek to determine which interventions can best prevent infections of disabled people and their caregivers. To accomplish this, we simulate COVID-19 transmission with a compartmental model that includes susceptible, exposed, asymptomatic, symptomatically ill, hospitalized, and removed/recovered individuals. The networks on which we simulate disease spread incorporate heterogeneity in the risk levels of different types of interactions, time-dependent lockdown and reopening measures, and interaction distributions for four different groups (caregivers, disabled people, essential workers, and the general population). Of these groups, we find that the probability of becoming infected is largest for caregivers and second largest for disabled people. Consistent with this finding, our analysis of network structure illustrates that caregivers have the largest modal eigenvector centrality of the four groups. We find that two interventions-contact-limiting by all groups and mask-wearing by disabled people and caregivers-most reduce the number of infections in disabled and caregiver populations. We also test which group of people spreads COVID-19 most readily by seeding infections in a subset of each group and comparing the total number of infections as the disease spreads. We find that caregivers are the most potent spreaders of COVID-19, particularly to other caregivers and to disabled people. We test where to use limited infection-blocking vaccine doses most effectively and find that (1) vaccinating caregivers better protects disabled people from infection than vaccinating the general population or essential workers and that (2) vaccinating caregivers protects disabled people from infection about as effectively as vaccinating disabled people themselves. Our results highlight the potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic vaccination for limiting the exposure of disabled people and their caregivers to COVID-19.


Subject(s)
COVID-19 , Activities of Daily Living , COVID-19/epidemiology , COVID-19/prevention & control , Caregivers , Communicable Disease Control , Humans
8.
Nat Commun ; 13(1): 1118, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236835

ABSTRACT

Convergent processing of the world may be a factor that contributes to social connectedness. We use neuroimaging and network analysis to investigate the association between the social-network position (as measured by in-degree centrality) of first-year university students and their neural similarity while watching naturalistic audio-visual stimuli (specifically, videos). There were 119 students in the social-network study; 63 of them participated in the neuroimaging study. We show that more central individuals had similar neural responses to their peers and to each other in brain regions that are associated with high-level interpretations and social cognition (e.g., in the default mode network), whereas less-central individuals exhibited more variable responses. Self-reported enjoyment of and interest in stimuli followed a similar pattern, but accounting for these data did not change our main results. These findings show that neural processing of external stimuli is similar in highly-central individuals but is idiosyncratic in less-central individuals.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Emotions , Humans , Magnetic Resonance Imaging/methods , Neural Pathways/physiology , Social Networking
9.
Phys Rev E ; 104(4-1): 044305, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781513

ABSTRACT

Dynamic-mode decomposition (DMD) is a versatile framework for model-free analysis of time series that are generated by dynamical systems. We develop a DMD-based algorithm to investigate the formation of functional communities in networks of coupled, heterogeneous Kuramoto oscillators. In these functional communities, the oscillators in a network have similar dynamics. We consider two common random-graph models (Watts-Strogatz networks and Barabási-Albert networks) with different amounts of heterogeneities among the oscillators. In our computations, we find that membership in a functional community reflects the extent to which there is establishment and sustainment of locking between oscillators. We construct forest graphs that illustrate the complex ways in which the heterogeneous oscillators associate and disassociate with each other.

10.
Phys Rev E ; 103(2-1): 022304, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736012

ABSTRACT

The study of temporal networks in discrete time has yielded numerous insights into time-dependent networked systems in a wide variety of applications. However, for many complex systems, it is useful to develop continuous-time models of networks and to compare them to associated discrete models. In this paper, we study several continuous-time network models and examine discrete approximations of them both numerically and analytically. To consider continuous-time networks, we associate each edge in a graph with a time-dependent tie strength that can take continuous non-negative values and decays in time after the most recent interaction. We investigate how the moments of the tie strength evolve with time in several models, and we explore-both numerically and analytically-criteria for the emergence of a giant connected component in some of these models. We also briefly examine the effects of the interaction patterns of continuous-time networks on the contagion dynamics of a susceptible-infected-recovered model of an infectious disease.

11.
Soc Cogn Affect Neurosci ; 16(8): 883-901, 2021 08 05.
Article in English | MEDLINE | ID: mdl-32415969

ABSTRACT

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual's social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.


Subject(s)
Brain , Social Network Analysis , Cognition , Humans , Social Environment
12.
Phys Rev E ; 101(6-1): 062305, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688464

ABSTRACT

For many networks, it is useful to think of their nodes as being embedded in a latent space, and such embeddings can affect the probabilities for nodes to be adjacent to each other. In this paper, we extend existing models of synthetic networks to spatial network models by first embedding nodes in Euclidean space and then modifying the models so that progressively longer edges occur with progressively smaller probabilities. We start by extending a geographical fitness model by employing Gaussian-distributed fitnesses, and we then develop spatial versions of preferential attachment and configuration models. We define a notion of "spatial strength centrality" to help characterize how strongly a spatial embedding affects network structure, and we examine spatial strength centrality on a variety of real and synthetic networks.

13.
Phys Rev E ; 101(6-1): 062303, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688568

ABSTRACT

We investigate a nonlinear version of coevolving voter models, in which node states and network structure update as a coupled stochastic process. Most prior work on coevolving voter models has focused on linear update rules with fixed and homogeneous rewiring and adopting probabilities. By contrast, in our nonlinear version, the probability that a node rewires or adopts is a function of how well it "fits in" with the nodes in its neighborhood. To explore this idea, we incorporate a local-survey parameter σ_{i} that encodes the fraction of neighbors of an updating node i that share its opinion state. In an update, with probability σ_{i}^{q} (for some nonlinearity parameter q), the updating node rewires; with complementary probability 1-σ_{i}^{q}, the updating node adopts a new opinion state. We study this mechanism using three rewiring schemes: after an updating node deletes one of its discordant edges, it then either (1) "rewires-to-random" by choosing a new neighbor in a random process; (2) "rewires-to-same" by choosing a new neighbor in a random process from nodes that share its state; or (3) "rewires-to-none" by not rewiring at all (akin to "unfriending" on social media). We compare our nonlinear coevolving voter model to several existing linear coevolving voter models on various network architectures. Relative to those models, we find in our model that initial network topology plays a larger role in the dynamics and that the choice of rewiring mechanism plays a smaller role. A particularly interesting feature of our model is that, under certain conditions, the opinion state that is held initially by a minority of the nodes can effectively spread to almost every node in a network if the minority nodes view themselves as the majority. In light of this observation, we relate our results to recent work on the majority illusion in social networks.

14.
Phys Rev E ; 102(6-1): 062307, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466038

ABSTRACT

Many recent developments in network analysis have focused on multilayer networks, which one can use to encode time-dependent interactions, multiple types of interactions, and other complications that arise in complex systems. Like their monolayer counterparts, multilayer networks in applications often have mesoscale features, such as community structure. A prominent approach for inferring such structures is the employment of multilayer stochastic block models (SBMs). A common (but potentially inadequate) assumption of these models is the sampling of edges in different layers independently, conditioned on the community labels of the nodes. In this paper, we relax this assumption of independence by incorporating edge correlations into an SBM-like model. We derive maximum-likelihood estimates of the key parameters of our model, and we propose a measure of layer correlation that reflects the similarity between the connectivity patterns in different layers. Finally, we explain how to use correlated models for edge "prediction" (i.e., inference) in multilayer networks. By incorporating edge correlations, we find that prediction accuracy improves both in synthetic networks and in a temporal network of shoppers who are connected to previously purchased grocery products.

15.
J Theor Biol ; 493: 110101, 2020 05 21.
Article in English | MEDLINE | ID: mdl-31816295

ABSTRACT

Animals use a wide variety of strategies to reduce or avoid aggression in conflicts over resources. These strategies range from sharing resources without outward signs of conflict to the development of dominance hierarchies, in which initial fighting is followed by the submission of subordinates. Although models have been developed to analyse specific strategies for resolving conflicts over resources, little work has focused on trying to understand why particular strategies are more likely to arise in certain situations. In this paper, we use a model based on an iterated Hawk-Dove game to analyse how resource holding potentials (RHPs) and other factors affect whether sharing, dominance relationships, or other behaviours are evolutionarily stable. We find through extensive numerical simulations that sharing is stable only when the cost of fighting is low and the animals in a contest have similar RHPs, whereas dominance relationships are stable in most other situations. We also explore what happens when animals are unable to assess each other's RHPs without fighting, and we compare a range of strategies for contestants using simulations. We find (1) that the most successful strategies involve a limited period of assessment followed by a stable relationship in which fights are avoided and (2) that the duration of assessment depends both on the costliness of fighting and on the difference between the animals' RHPs. Along with our direct work on modelling and simulations, we develop extensive software to facilitate further testing. It is available at https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/.


Subject(s)
Columbidae , Game Theory , Animals , Biological Evolution , Models, Biological , Social Dominance
16.
Anim Behav ; 149: 7-22, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31772393

ABSTRACT

Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as multilayer network analysis, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour through connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population and evolutionary levels of organization. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.

17.
Proc Natl Acad Sci U S A ; 116(34): 16742-16749, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31375633

ABSTRACT

Forecasting fracture locations in a progressively failing disordered structure is of paramount importance when considering structural materials. We explore this issue for gradual deterioration via beam breakage of 2-dimensional (2D) disordered lattices, which we represent as networks, for various values of mean degree. We study experimental samples with geometric structures that we construct based on observed contact networks in 2D granular media. We calculate geodesic edge betweenness centrality, which helps quantify which edges are on many shortest paths in a network, to forecast the failure locations. We demonstrate for the tested samples that, for a variety of failure behaviors, failures occur predominantly at locations that have larger geodesic edge betweenness values than the mean one in the structure. Because only a small fraction of edges have values above the mean, this is a relevant diagnostic to assess failure locations. Our results demonstrate that one can consider only specific parts of a system as likely failure locations and that, with reasonable success, one can assess possible failure locations of a structure without needing to study its detailed energetic states.

18.
Phys Rev E ; 99(2-1): 022313, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934370

ABSTRACT

The spread of opinions, memes, diseases, and "alternative facts" in a population depends both on the details of the spreading process and on the structure of the social and communication networks on which they spread. One feature that can change spreading dynamics substantially is heterogeneous behavior among different types of individuals in a social network. In this paper, we explore how antiestablishment nodes (e.g., hipsters) influence the spreading dynamics of two competing products. We consider a model in which spreading follows a deterministic rule for updating node states (which indicate which product has been adopted) in which an adjustable probability p_{Hip} of the nodes in a network are hipsters, who choose to adopt the product that they believe is the less popular of the two. The remaining nodes are conformists, who choose which product to adopt by considering which products their immediate neighbors have adopted. We simulate our model on both synthetic and real networks, and we show that the hipsters have a major effect on the final fraction of people who adopt each product: even when only one of the two products exists at the beginning of the simulations, a small fraction of hipsters in a network can still cause the other product to eventually become the more popular one. To account for this behavior, we construct an approximation for the steady-state adoption fractions of the products on k-regular trees in the limit of few hipsters. Additionally, our simulations demonstrate that a time delay τ in the knowledge of the product distribution in a population, as compared to immediate knowledge of product adoption among nearest neighbors, can have a large effect on the final distribution of product adoptions. Using a local-tree approximation, we derive an analytical estimate of the spreading of products and obtain good agreement if a sufficiently small fraction of the population consists of hipsters. In all networks, we find that either of the two products can become the more popular one at steady state, depending on the fraction of hipsters in the network and on the amount of delay in the knowledge of the product distribution. Our simple model and analysis may help shed light on the road to success for antiestablishment choices in elections, as such success-and qualitative differences in final outcomes between competing products, political candidates, and so on-can arise rather generically in our model from a small number of antiestablishment individuals and ordinary processes of social influence on normal individuals.


Subject(s)
Minority Groups , Models, Theoretical , Humans
19.
Phys Rev E ; 100(6-1): 062304, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962461

ABSTRACT

The analysis and characterization of human mobility using population-level mobility models is important for numerous applications, ranging from the estimation of commuter flows in cities to modeling trade flows between countries. However, almost all of these applications have focused on large spatial scales, which typically range between intracity scales and intercountry scales. In this paper, we investigate population-level human mobility models on a much smaller spatial scale by using them to estimate customer mobility flow between supermarket zones. We use anonymized, ordered customer-basket data to infer empirical mobility flow in supermarkets, and we apply variants of the gravity and intervening-opportunities models to fit this mobility flow and estimate the flow on unseen data. We find that a doubly-constrained gravity model and an extended radiation model (which is a type of intervening-opportunities model) can successfully estimate 65%-70% of the flow inside supermarkets. Using a gravity model as a case study, we then investigate how to reduce congestion in supermarkets using mobility models. We model each supermarket zone as a queue, and we use a gravity model to identify store layouts with low congestion, which we measure either by the maximum number of visits to a zone or by the total mean queue size. We then use a simulated-annealing algorithm to find store layouts with lower congestion than a supermarket's original layout. In these optimized store layouts, we find that popular zones are often in the perimeter of a store. Our research gives insight both into how customers move in supermarkets and into how retailers can arrange stores to reduce congestion. It also provides a case study of human mobility on small spatial scales.

20.
Nat Neurosci ; 22(3): 504, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30568296

ABSTRACT

In the version of this article initially published, in the PDF, equations (2) and (4) erroneously displayed a curly bracket on the right hand side of the equation. This should not be there. The errors have been corrected in the PDF version of the article. The equations appear correctly in the HTML.

SELECTION OF CITATIONS
SEARCH DETAIL
...