Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 109(4): 1859-71, 2016 08.
Article in English | MEDLINE | ID: mdl-27329627

ABSTRACT

Blended refuge for transgenic plants expressing Bacillus thuringiensis (Bt) toxins has been approved in the northern United States as a resistance management strategy alternative to a structured refuge. A three-year study (2012-2014) was conducted with 54 trials across nine states in the southern United States to evaluate plant injury from lepidopteran pests of corn and yield in a corn hybrid expressing Cry1F × Cry1Ab × Vip3Aa20 (Pioneer Brand Optimum Leptra) planted as a pure stand and in refuge blends of 5, 10, and 20% in both early and late plantings. Injury by corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), was generally proportional to the percentage of non-Bt corn within each refuge blend. Across locations, ear injury in plots with 100% Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) corn ranged from no injury to a maximum of 0.42 cm(2) per ear in Mississippi in 2013. Leaf injury ratings in 100% non-Bt plots in early and late planted trials in 2014 were 86- and 70-fold greater than in 100% Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) plots. Plants in plots with blended refuges had significantly greater leaf injury in 2012 (5, 10, and 20% refuge blends), in the early-planted corn in 2013 (10 and 20% only), and in both early- and late-planted corn in 2014 (20% only) as compared with leaf injury in a pure stand of Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) seen during these years. Corn ears in plots with blended refuges also had significantly greater area of kernels injured in 2012 (5, 10, and 20%), in early- and late-planted corn in 2013 (5, 10, and 20%), and in early (10 and 20% only)- and late-planted corn (5, 10, and 20%) in 2014 as compared with ear injury in a pure stand of Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) seen during these years. Infestations of southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), were also significantly reduced by Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra). Despite these differences in injury, yield averaged across locations varied among refuge blends only in the late-planted trials in 2013, with greater yields in the 0% refuge blend than in the 20% blend; however, when examining yield separately by location, only two of nine locations had higher yields in the 100% Bt plots than in any of the blended refuge plots. As a complement to studying the contribution of blended refuge to delaying resistance, quantifying injury and yield in a range of refuge blends is a necessary step to provide management information on the range of lepidopteran pests that occur in the southern United States.


Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Moths/physiology , Zea mays/physiology , Animals , Bacillus thuringiensis/genetics , Insecticide Resistance , Pest Control, Biological , United States , Zea mays/genetics , Zea mays/growth & development
2.
J Econ Entomol ; 108(1): 157-65, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26470116

ABSTRACT

Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae); corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae); southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae); sugarcane borer, Diatraea saccharalis F. (Lepidoptera: Crambidae); and lesser cornstalk borer, Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), are lepidopteran pests of corn, Zea mays L., in the southern United States. Blended refuge for transgenic plants expressing the insecticidal protein derivative from Bacillus thuringiensis (Bt) has recently been approved as an alternative resistance management strategy in the northern United States. We conducted a two-year study with 39 experiments across 12 states in the southern United States to evaluate plant injury from these five species of Lepidoptera to corn expressing Cry1F and Cry1Ab, as both single and pyramided traits, a pyramid of Cry1Ab×Vip3Aa20, and a pyramid of Cry1F×Cry1Ab plus non-Bt in a blended refuge. Leaf injury and kernel damage from corn earworm and fall armyworm, and stalking tunneling by southwestern corn borer, were similar in Cry1F×Cry1Ab plants compared with the Cry1F×Cry1Ab plus non-Bt blended refuge averaged across five-plant clusters. When measured on an individual plant basis, leaf injury, kernel damage, stalk tunneling (southwestern corn borer), and dead or injured plants (lesser cornstalk borer) were greater in the blended non-Bt refuge plants compared to Cry1F×Cry1Ab plants in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment. When non-Bt blended refuge plants were compared to a structured refuge of non-Bt plants, no significant difference was detected in leaf injury, kernel damage, or stalk tunneling (southwestern corn borer). Plant stands in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment had more stalk tunneling from sugarcane borer and plant death from lesser cornstalk borer compared to a pyramided Cry1F×Cry1Ab structured refuge treatment. Hybrid plants containing Cry1F×Cry1Ab within the pyramided Cry1F×Cry1Ab blended refuge treatment had significantly less kernel damage than non-Bt structured refuge treatments. Both single and pyramided Bt traits were effective against southwestern corn borer, sugarcane borer, and lesser cornstalk borer.


Subject(s)
Agriculture/methods , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Herbivory , Lepidoptera , Animals , Bacillus thuringiensis Toxins , Spodoptera
3.
Ultrason Imaging ; 11(4): 283-304, 1989 Oct.
Article in English | MEDLINE | ID: mdl-2815426

ABSTRACT

A three-dimensional diffraction tomography algorithm based on image projections is implemented. For each view, the measured scattered field is directly backpropagated onto a single plane in the image space. The backpropagated field evaluated on the plane is defined as the image projection because it closely approximates the straight line projection of the object. The object is then reconstructed by parallel slices using conventional straight ray tomographic techniques. This approach permits practical three-dimensional reconstruction using a limited number of views. The reconstructions made with image projections are of comparable quality to ideal diffraction-limited images. By backpropagating the field prior to filtering, curved or misaligned recording surfaces can be used. The limits on the image projection technique for multiple object systems are explored. A diffuse structure is reconstructed.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Tomography
4.
Ultrason Imaging ; 10(3): 204-19, 1988 Jul.
Article in English | MEDLINE | ID: mdl-3062873

ABSTRACT

A method of three-dimensional diffraction tomography based on image projections is derived. Inversion methods based on projections generally are inaccurate due to the spreading nature of the scattered wave. By backpropagating the field onto a single plane in the image region, diffraction effects are reduced and a projection of the weakly scattering object is generated. Consequently, conventional X-ray inversion techniques may be used to image the object. The relationship between the backpropagated field and the projection is derived both for high frequency incident waves and low spatial frequency scatterers. The generalized image kernel allows the use of curved or misaligned recording surfaces. Numerical results are included.


Subject(s)
Ultrasonography/methods , Algorithms , Humans , Image Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...