Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 16(1): 97-103, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11149495

ABSTRACT

Long-term treatment with glucocorticoids (GCs) leads to a rapid bone loss and to a greater risk of fractures. To evaluate the specific effects of this treatment on cancellous bone remodeling, structure, and microarchitecture, we compared 22 transiliac biopsy specimens taken in postmenopausal women (65 +/- 6 years) receiving GCs (> or = 7.5 mg/day, for at least 6 months) and 22 biopsy specimens taken in age-matched women with postmenopausal osteoporosis (PMOP), all untreated and having either at least one vertebral fracture or a T score < -2.5 SD. On these biopsy specimens, we measured static and dynamic parameters reflecting trabecular bone formation and resorption. Also, we performed the strut analysis and evaluated the trabecular bone pattern factor (TBPf), Euler number/tissue volume (E/TV), interconnectivity index (ICI), and marrow star volume (MaSV). Glucocorticoid-induced osteoporosis (GIOP), when compared with PMOP, was characterized by lower bone volume (BV/TV), trabecular thickness (Tb.Th), wall thickness (W.Th), osteoid thickness (O.Th), bone formation rate/bone surface (BFR/BS), adjusted mineral apposition rate/bone surface (Aj.AR/BS), and higher ICI and resorption parameters. After adjustment for BV/TV, the W.Th remained significantly lower in GIOP (p < 0.0001). The active formation period [FP(a+)] was not different. Patients with GIOP were divided into two groups: high cumulative dose GCs (HGCs; 23.7 +/- 9.7 g) and low cumulative dose GCs (LGCs; 2.7 +/- 1.2 g). HGC when compared with LGC was characterized by lower W.Th (p < 0.05), BV/TV (p < 0.001), Tb.Th (p < 0.05), trabecular number (Tb.N; p < 0.05), FP(a+)(p < 0.05), and nodes (p < 0.05), and higher E/TV (p < 0.05), ICI (p < 0.005), and TBPf (p < 0.05). When HGC was compared with PMOP, the results were similar except for the MaSV, which was significantly higher (p < 0.005). In summary, GIOP was characterized by lower formation and higher resorption than in PMOP, already present after LGC. With HGCs, these changes were associated with a more dramatic bone loss caused by a major loss of trabecular connectivity.


Subject(s)
Bone Remodeling/drug effects , Bone and Bones/pathology , Glucocorticoids/pharmacology , Osteoporosis/chemically induced , Osteoporosis/pathology , Aged , Biopsy , Bone and Bones/drug effects , Bone and Bones/metabolism , Female , Histocytochemistry , Humans , Ilium/drug effects , Ilium/metabolism , Ilium/pathology , Middle Aged , Osteoporosis/classification , Osteoporosis/drug therapy , Osteoporosis, Postmenopausal/chemically induced , Osteoporosis, Postmenopausal/classification , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/pathology , Postmenopause
2.
J Bone Miner Res ; 15(4): 754-62, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10780867

ABSTRACT

Effects of alendronate (ALN) on bone quality and turnover were assessed in 88 patients (52 women and 36 men aged 22-75 years) who received long-term oral glucocorticoid exposure. Patients were randomized to receive oral placebo or alendronate 2.5, 5, or 10 mg/day for 1 year and stratified according to the duration of their prior glucocorticoid treatment. Transiliac bone biopsies were obtained for qualitative and quantitative analysis after tetracycline double-labeling at the end of 1 year of treatment. As previously reported in glucocorticoid-induced osteoporosis, low cancellous bone volume and wall thickness were noted in the placebo group as compared with normal values. Alendronate treatment was not associated with any qualitative abnormalities. Quantitative comparisons among the four treatment groups were performed after adjustment for age, gender, and steroid exposure. Alendronate did not impair mineralization at any dose as assessed by mineralization rate. Osteoid thickness (O.Th) and volume (OV/BV) were significantly lower in alendronate-treated patients, irrespective of the dose (P = 0.0003 and 0.01, respectively, for O.Th and OV/BV); however, mineral apposition rate was not altered. As anticipated, significant decreases of mineralizing surfaces (76% pooled alendronate group; P = 0.006), activation frequency (-72%; P = 0.004), and bone formation rate (-71%; P = 0.005) were also noted with alendronate treatment. No significant difference was noted between the changes observed with each dose. Absence of tetracycline label in trabecular bone was noted in approximately 4% of biopsies in placebo and alendronate-treated groups. Trabecular bone volume, parameters of microarchitecture, and resorption did not differ significantly between groups. In conclusion, alendronate treatment in patients on glucocorticoids decreased the rate of bone turnover, but did not completely suppress bone remodeling and maintained normal mineralization at all alendronate doses studied. Alendronate treatment did not influence the osteoblastic activity, which is already low in glucocorticoid-induced osteoporosis.


Subject(s)
Alendronate/pharmacology , Bone Remodeling/drug effects , Femur/drug effects , Glucocorticoids/adverse effects , Lumbar Vertebrae/drug effects , Osteoporosis/pathology , Adult , Aged , Alendronate/administration & dosage , Bone Density/drug effects , Calcification, Physiologic , Female , Femur/pathology , Femur/physiopathology , Glucocorticoids/therapeutic use , Humans , Ilium/pathology , Ilium/physiopathology , Lumbar Vertebrae/pathology , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Osteoporosis/chemically induced , Osteoporosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...