Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628995

ABSTRACT

The release of carbon dioxide (CO2) into the atmosphere has accelerated during the last two decades. Elevated atmospheric CO2 concentration (eCO2) is known as an agent that improves plant photosynthesis. However, eCO2 was also correlated with alterations in the macronutrient and micronutrient compositions of various dietary crops. In order to explore the effect of eCO2 on the nutritional and health properties of tomatoes, three parental lines of the Magic population, which includes a large part of the genetic diversity present in large fruit varieties, were used as models. The plants were grown in growth chambers under ambient (400 ppm) or eCO2 (900 ppm) conditions. The macronutrient and micronutrient contents were measured. The anti-oxidant and anti-inflammatory bioactivities were assessed in vitro on activated macrophages. These analyses highlighted that the carbohydrate content was not affected by the eCO2, whereas the protein, carotenoid, lycopene, and mineral contents decreased. Regarding the anti-oxidant properties, no influence of eCO2 exposure was observed. Similarly, the anti-inflammatory properties were not affected by the eCO2. These data are in contrast with previous studies conducted on different plant species or accessions, indicating that the effect of eCO2 on crops' nutrition and health properties is based on complex mechanisms in which growth conditions and genetic backgrounds play a central role.


Subject(s)
Solanum lycopersicum , Carbon Dioxide , Antioxidants/pharmacology , Nutritional Status , Crops, Agricultural , Micronutrients
2.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36829899

ABSTRACT

Metabolic syndrome (METS) is a complex disorder that predisposes an affected person to an increased risk of diabetes and cardiovascular disease. Bitter Asteraceae plants contain several compounds active against METS that can be used as an alternative preventive therapy. Our previous work showed that a natural chicory extract (NCRAE) containing chicoric acid (CRA) and chlorogenic acid (CGA) in a molar ratio of 70/30 exhibited an antioxidant, insulin sensitization and anti-hyperglycemic effect. The present study was designed to evaluate the preventive effects of an NCRAE-like extract against METS in a complementary natural pharmacotherapeutic approach. An original Asteraceae infused drink containing the NCRAE CRA/CGA molecular ratio equivalent was prepared from dandelion (Taraxacum officinale L.) and burdock (Arctium lappa L.). The anti-METS effect of this drink was evaluated on the fructose-rat model for 8 weeks. Body weight, blood biochemistry, hepatic glucose-6-phosphatase, arterial blood pressure glucose and insulin tolerance were evaluated after 8 weeks. Our results show that daily oral intake of the Asteraceae infused drink led to a reduction of body weight gain, hyperglycemia, hypertriglyceridemia, insulin resistance and hypertension. Moreover, rat-by-rat analysis of the insulinemia measures revealed two types of responders. One sub-group of subjects demonstrated normal insulinemia and the other subgroup demonstrated hyperinsulinemia. This hyperinsulinemia, associated with the inhibition of the glucose-6-phosphatase activity in the liver tissue, may suggest an insulin release caused by CGA. The present study suggests that this original infusion of dandelion leaves and burdock roots may be used as an adjuvant therapy to prevent metabolic syndrome.

3.
Foods ; 11(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35885268

ABSTRACT

(1) Background: Manihot esculenta, cassava, is an essential food crop for human consumption in many parts of the world. Besides the wide use of its roots, cassava leaves have been used locally as green vegetables and for medicinal purposes. However, nutritional health data regarding cassava leaves is limited, therefore we investigated its composition and associated potential bioactivity interest for human health. (2) Methods: Cassava leaf bioactivity investigations focused on antioxidant properties (free radical scavenging) in association with immunomodulatory activities on inflammatory murine macrophages to measure the impact of cassava extract on the production of pro-inflammatory cytokines such as Interleukin-6, Tumor Necrosis Factor alpha, Monocyte Chemoattractant Protein-1, Prostaglandin-E2 and mediators such as nitric oxide. (3) Results: Antioxidant and immunomodulatory bioactivities were significant, with a concentration-dependent inhibition of cytokines production by inflammatory macrophages; (4) Conclusions: Taken together, our results tend to suggest that Manihot esculenta leaves might be underrated regarding the potential nutrition-health interest of this vegetal matrix for both human nutrition and prophylaxis of metabolic disease with underlying low grade inflammation status.

4.
Molecules ; 27(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684524

ABSTRACT

(1) Background: The anthropogenically induced rise in atmospheric carbon dioxide (CO2) and associated climate change are considered a potential threat to human nutrition. Indeed, an elevated CO2 concentration was associated with significant alterations in macronutrient and micronutrient content in various dietary crops. (2) Method: In order to explore the impact of elevated CO2 on the nutritional-health properties of tomato, we used the dwarf tomato variety Micro-Tom plant model. Micro-Toms were grown in culture chambers under 400 ppm (ambient) or 900 ppm (elevated) carbon dioxide. Macronutrients, carotenoids, and mineral contents were analyzed. Biological anti-oxidant and anti-inflammatory bioactivities were assessed in vitro on activated macrophages. (3) Results: Micro-Tom exposure to 900 ppm carbon dioxide was associated with an increased carbohydrate content whereas protein, minerals, and total carotenoids content were decreased. These modifications of composition were associated with an altered bioactivity profile. Indeed, antioxidant anti-inflammatory potential were altered by 900 ppm CO2 exposure. (4) Conclusions: Taken together, our results suggest that (i) the Micro-Tom is a laboratory model of interest to study elevated CO2 effects on crops and (ii) exposure to 900 ppm CO2 led to the decrease of nutritional potential and an increase of health beneficial properties of tomatoes for human health.


Subject(s)
Carotenoids/chemistry , Solanum lycopersicum , Carbon Dioxide/chemistry , Carbon Dioxide/pharmacology , Carotenoids/pharmacology , Climate Change , Crops, Agricultural , Humans , Minerals/chemistry
5.
Foods ; 11(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35741897

ABSTRACT

(1) Background: Ocimum basilicum L. is an aromatic medicinal plant of the Lamiaceae family known as sweet basil. It is used in traditional medicine for its beneficial effects on gastrointestinal disorders, inflammation, immune system, pyrexia or cancer among others. Ocimum basilicum (OB) leaf extracts contain many phytochemicals bearing the plant health effects but no reports is available on the potential bioactivity of stem extracts. Our investigation aimed at assessing the differential biological activity between basil leaf and stem to promote this co-product valorization. (2) Method: For this purpose we explored phytochemical composition of both parts of the plant. Antioxidant activity was evaluated through total polyphenol content measure, DPPH and ORAC tests. Anti-inflammatory markers on stimulated macrophages, including NO (nitric oxide), TNFa (tumor necrosis factor alpha), IL-6 (interleukin 6), MCP1 (monocyte attractant protein 1) and PGE-2 (prostaglandin E2), were evaluated. In addition, we investigated OB effects on jejunum smooth muscle contractility. (3) Results: OB extracts from leaves and stems demonstrated a different biological activity profile at the level of both antioxidant, anti-inflammatory and smooth muscle relaxation effects. (4) Conclusion: Taken together our results suggest that Ocimum basilicum extracts from co-product stems, in addition to leaves, may be of interest at the nutrition-health level with specific therapeutic potential.

6.
Food Res Int ; 142: 110223, 2021 04.
Article in English | MEDLINE | ID: mdl-33773652

ABSTRACT

Many studies indicate that food matrix microstructure and type of dietary oil or fat play a key role in carotenoid absorption. Therefore, this work was designed to highlight the relationship between processed food microstructure and carotenoid absorption. This study aimed to evaluate the consumption of a carotenoid-rich fruit snack on lipid profile, glycemia and especially on carotenoid absorption/bioconversion in Wistar rats. Animals were fed with mixtures based on vacuum-fried papaya chips with either soy oil (PC-S) or palm oil (PC-P) during 7 days, receiving 0.29 mg lycopene/kg/day and 0.35 mg total carotenoids/kg/day. Lycopene and retinoids were analyzed in plasma and liver of rats by HPLC-DAD. Results showed that the consumption of mixtures based on papaya chips did not affect the lipid profile or glycemia in rat plasma, regardless the type of oil. Wide-field and confocal microscopy analyses of food matrix helped to understand why lycopene accumulation in the liver was higher (p < 0.05) in rats fed with PC-P (0.442 µg/g liver) than in those fed with PC-S (0.291 µg/g liver). A better dissolution of crystalloid lycopene was found in PC-P. Conversely, a higher bioconversion of provitamin A carotenoids was observed for soy products. The effect of type of oil was underlined by epifluorescence microscopy of papaya mixtures showing homogeneous and small lipid droplets for soy products. These results showed that PC-S could be recommanded as a healthy snack, being a source of provitamin A carotenoids and bioavailable lycopene in a diversified diet.


Subject(s)
Carica , Animals , Carotenoids , Fats, Unsaturated , Rats , Rats, Wistar , Vacuum
7.
Food Funct ; 11(10): 9263-9271, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33047760

ABSTRACT

Citrus fruits are known for their beneficial health effects associated with the prevention of metabolic syndrome/type 2 diabetes that is mainly attributed to flavonoids. Few investigations have reported the potential anti-diabetic effects of retinoids from the bioconversion of ß-cryptoxanthin (bcx), a citrus carotenoid. Therefore, the present study explored the anti-diabetic effect of a citrus functional food, obtained by membrane eco-technology of a citrus clementina juice, especially enriched in bcx but also in flavonoids and pectin. We assessed the in vivo effect of citrus bcx absorption and its bioconversion into retinoids in metabolic syndrome/type 2 diabetic fructose rats. Fructose-fed rats were used as a prediabetic control, and a prediabetic group was treated with the citrus concentrate for 8 weeks. The citrus-based food treatment improved glucose tolerance, dyslipidemia and blood pressure, in prediabetic rats. Although these effects were in part due to the synergy between enriched phytonutrients (bcx, hesperidin, pectin) of the citrus matrix, the role of bcx and its bioconversion into retinoids were highlighted. We showed that prediabetic rats absorbed less bcx and the bioconversion was less efficient. Bcx from citrus-based food was able to restore vitamin A status in prediabetic rats suggesting that the absorption/bioconversion of bcx may have a key role in improvement of metabolic syndrome/type 2 diabetes.


Subject(s)
Beta-Cryptoxanthin/metabolism , Citrus/metabolism , Diabetes Mellitus, Type 2/prevention & control , Metabolic Syndrome/prevention & control , Retinoids/administration & dosage , Animals , Beta-Cryptoxanthin/analysis , Citrus/chemistry , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Functional Food/analysis , Glucose/metabolism , Humans , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Rats
8.
J Ethnopharmacol ; 192: 264-272, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27451258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Morinda citrifolia L. (Noni) is a medicinal plant used in Polynesia for many properties such as anti-inflammatory, anti-diabetic and antineoplastic effects. Recent studies showed that noni juice have anti-oxidant and acute anti-inflammatory activities likely due to polyphenols, iridoids and vitamin C content. The present study was undertaken to evaluate chronic anti-inflammatory and spasmolytic effects of noni juice. MATERIALS AND METHODS: Therefore, we evaluated the effect of oral or intraperitoneal administrations of noni juice in vivo on the lung inflammation in ovalbumin (OVA) sensitized Brown Norway rat (with prednisolone 10mg/kg intraperitoneously as reference compound) and the ex vivo effect of noni juice on BaCl2 (calcium signal) or methacholine (cholinergic signal) induced spasms in jejunum segments. RESULTS: We found that noni juice (intraperitoneously 2.17mL/kg and orally 4.55mL/kg) reduced the inflammation in OVA-sensitized Brown Norway rat with regard to the decreased number of inflammatory cells in lung (macrophages minus 20-26%, lymphocytes minus 58-34%, eosinophils minus 53-30%, neutrophils minus 70-28% respectively). Noni juice demonstrated a dose-dependent NO scavenging effect up to 8.1nmol of nitrites for 50µL of noni juice. In addition noni juice inhibited (up to 90%) calcium and cholinergic induced spasms on the jejunum segments model with a rightward shift of the concentration response curve. CONCLUSION: We describe for the first time that noni juice demonstrate (1) a chronic anti-inflammatory activity on sensitized lungs along with (2) a spasmolytic effect integrating a calcium channel blocker activity component.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Jejunum/drug effects , Morinda/chemistry , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Parasympatholytics/pharmacology , Plant Extracts/pharmacology , Pneumonia/prevention & control , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antioxidants/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Fruit/chemistry , In Vitro Techniques , Injections, Intraperitoneal , Jejunum/metabolism , Lung/drug effects , Lung/metabolism , Muscle, Smooth/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Ovalbumin , Parasympatholytics/administration & dosage , Parasympatholytics/chemistry , Parasympatholytics/isolation & purification , Phytotherapy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , Pneumonia/chemically induced , Pneumonia/metabolism , Prednisolone/pharmacology , Rats, Inbred BN
9.
Plant Foods Hum Nutr ; 67(4): 384-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23230009

ABSTRACT

Awara (Astrocaryum vulgare M.) pulp oil has been shown to possess anti-inflammatory properties in vivo, and contains an unsaponifiable matter rich in bioactive compounds. This study focused on the ethanolic unsaponifiable fraction (EUF) of awara pulp oil. Its chemical composition has been characterized: carotenoid, phytosterol, and tocopherol contents represent 125.7, 152.6, and 6.8 µg/mg of EUF, respectively. We further evaluated this fraction for anti-inflammatory properties in J774 macrophages activated by lipopolysaccharide (LPS) plus interferon (IFN) γ to understand the biological effects of awara pulp oil. EUF strongly decreased nitric oxide (NO), prostaglandin E(2), tumour necrosis factor (TNF) α, and interleukin (IL) -6 and -10 production in activated J774 cells. Moreover, it inhibited expression of inducible NO synthase and cyclooxygenases-2 in vitro. The anti-inflammatory properties of EUF were also confirmed in vivo by modulation of TNFα, IL-6 and IL-10 serum concentration in an endotoxic shock model. Pre-treatment with awara oil fraction offers promise as a protective means to lower the production of excessive amounts of pro-inflammatory molecules.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arecaceae/chemistry , Fruit/chemistry , Plant Oils/pharmacology , Shock, Septic/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Cell Line , Cyclooxygenase 1/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Cytokines/blood , Cytokines/drug effects , Cytokines/metabolism , Dinoprostone/blood , Dose-Response Relationship, Drug , Interferon-gamma/adverse effects , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Macrophages/immunology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Phytosterols/analysis , Phytosterols/metabolism , Plant Oils/chemistry , Random Allocation , Shock, Septic/chemically induced , Shock, Septic/immunology , Tocopherols/analysis , Tocopherols/metabolism
10.
Fitoterapia ; 83(1): 33-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21958966

ABSTRACT

Awara (Astrocaryum vulgare M.) is a palm fruit mainly used in nutrition. We analysed the pulp oil for fatty acid, tocopherol, carotenoid, and phytosterol and we evaluated whether this oil may attenuate inflammation in vivo. In an endotoxic shock model, awara pulp oil treatment decreased pro-inflammatory cytokines and increased anti-inflammatory cytokines. In a pulmonary inflammation model, awara pulp oil treatment reduced eosinophil and lymphocyte numbers recovered into the broncho-alveolar lavages. These results suggest that awara pulp oil administration can efficiently counteract an acute and chronic inflammatory response in vivo that is probably mediated by fatty acids and minor compounds.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arecaceae/chemistry , Lung Diseases/drug therapy , Plant Oils/pharmacology , Shock, Septic/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Carotenoids/chemistry , Fatty Acids/chemistry , Lipopolysaccharides/toxicity , Lung Diseases/chemically induced , Male , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Phytosterols/chemistry , Plant Oils/chemistry , Random Allocation , Rats , Shock, Septic/chemically induced , Tocopherols/chemistry
11.
Respir Res ; 8: 35, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17477857

ABSTRACT

BACKGROUND: Antidepressants are heavily prescribed drugs and have been shown to affect inflammatory signals. We examined whether these have anti-inflammatory properties in animal models of septic shock and allergic asthma. We also analysed whether antidepressants act directly on peripheral cell types that participate in the inflammatory response in these diseases. METHODS: The antidepressants desipramine and fluoxetine were compared in vivo to the glucocorticoid prednisolone, an anti-inflammatory drug of reference. In a murine model of lipopolysaccharides (LPS)-induced septic shock, animals received the drugs either before or after injection of LPS. Circulating levels of tumour necrosis factor (TNF)-alpha and mortality rate were measured. In ovalbumin-sensitized rats, the effect of drug treatment on lung inflammation was assessed by counting leukocytes in bronchoalveolar lavages. Bronchial hyperreactivity was measured using barometric plethysmography. In vitro production of TNF-alpha and Regulated upon Activation, Normal T cell Expressed and presumably Secreted (RANTES) from activated monocytes and lung epithelial cells, respectively, was analysed by immunoassays. Reporter gene assays were used to measure the effect of antidepressants on the activity of nuclear factor-kappaB and activator protein-1 which are involved in the control of TNF-alpha and RANTES expression. RESULTS: In the septic shock model, all three drugs given preventively markedly decreased circulating levels of TNF-alpha and mortality (50% mortality in fluoxetine treated group, 30% in desipramine and prednisolone treated groups versus 90% in controls). In the curative trial, antidepressants had no statistically significant effect, while prednisolone still decreased mortality (60% mortality versus 95% in controls). In ovalbumin-sensitized rats, the three drugs decreased lung inflammation, albeit to different degrees. Prednisolone and fluoxetine reduced the number of macrophages, lymphocytes, neutrophils and eosinophils, while desipramine diminished only the number of macrophages and lymphocytes. However, antidepressants as opposed to prednisolone did not attenuate bronchial hyperreactivity. In vitro, desipramine and fluoxetine dose-dependently inhibited the release of TNF-alpha from LPS-treated monocytes. In lung epithelial cells, these compounds decreased TNF-alpha-induced RANTES expression as well as the activity of nuclear factor-kappaB and activator protein-1. CONCLUSION: Desipramine and fluoxetine reduce the inflammatory reaction in two animal models of human diseases. These antidepressants act directly on relevant peripheral cell types to decrease expression of inflammatory mediators probably by affecting their gene transcription. Clinical implications of these observations are discussed.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Desipramine/therapeutic use , Fluoxetine/therapeutic use , Animals , Asthma/complications , Asthma/metabolism , Cells, Cultured , Cytokines/drug effects , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/etiology , Mice , Mice, Inbred BALB C , Monocytes/drug effects , Prednisolone/therapeutic use , Rats , Respiratory Mucosa/drug effects , Shock, Septic/complications , Shock, Septic/metabolism , Treatment Outcome
12.
Can J Physiol Pharmacol ; 82(10): 911-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15573152

ABSTRACT

High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4.5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2 (-log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.


Subject(s)
Fructose/administration & dosage , Insulin/blood , Tungsten Compounds/pharmacology , Vanadium Compounds/pharmacology , Vasomotor System/drug effects , Animals , Dose-Response Relationship, Drug , In Vitro Techniques , Insulin Resistance/physiology , Male , Rats , Rats, Sprague-Dawley , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology , Vasomotor System/metabolism
13.
J Agric Food Chem ; 52(16): 5297-302, 2004 Aug 11.
Article in English | MEDLINE | ID: mdl-15291511

ABSTRACT

The aim of this study was to evaluate the antiatherosclerotic effect of commercially available phenolic-rich extracts from grape seeds (ExGrape seeds, EGS; grape seed extract, GSE) and marc (ExGrape total, EGT) in cholesterol-fed hamsters and to investigate possible operating mechanisms. These extracts fed at a moderate dose mimicking two glasses of red wine per meal reduced plasma cholesterol (-11% on average) but did not affect plasma antioxidant capacity of hamsters. The extracts prevented the development of aortic atherosclerosis by 68% (EGS), 63% (EGT), and 34% (GSE). Elsewhere, in an ex vivo experiment using rat aortic rings, EGS (7 microg/mL) induced 77% endothelium-dependent relaxation, whereas EGT and GSE (30 microg/mL) induced 84 and 72%, respectively. These results suggests that phenolic extracts from grape seeds and marc are beneficial in inhibiting atherosclerosis by indirect mechanism(s).


Subject(s)
Antioxidants , Arteriosclerosis/prevention & control , Phenols/therapeutic use , Seeds/chemistry , Vitis/chemistry , Animals , Aorta/drug effects , Arteriosclerosis/etiology , Cholesterol/blood , Cholesterol, Dietary/administration & dosage , Cricetinae , Phenols/analysis , Plant Extracts/therapeutic use , Rats
14.
J Pharmacol Exp Ther ; 306(1): 253-61, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12660315

ABSTRACT

We have discovered a new, potent, selective, and orally active oxytocin receptor antagonist, (2S,4Z)-N-[(2S)-2-hydroxy-2-phenylethyl]-4-(methoxyimino)-1-[(2'-methyl[1,1'-biphenyl]-4-yl)carbonyl]-2-pyrrolidinecarboxamide (compound 1). We report the biochemical, pharmacological, and pharmacokinetic characterization in vitro and in vivo of this compound. Compound 1 competitively inhibits binding of [3H]oxytocin and the peptide antagonist 125I-ornithine vasotocin analog to human and rat oxytocin receptor expressed in human embryonic kidney 293-EBNA or Chinese hamster ovary cells with nanomolar potency. Selectivity against vasopressin receptor subtypes is >6-fold for V1a and >350-fold for V2 and V1b. Compound 1 inhibits oxytocin-evoked intracellular Ca2+ mobilization (IC50 = 8 nM). Compound 1 has no intrinsic agonist activity at the oxytocin receptor. Oxytocininduced contraction of isolated rat uterine strips is blocked by compound 1 (pA2 = 7.82). In anesthetized nonpregnant rats, single administration of compound 1 by i.v. or oral routes causes dose-dependent inhibition of contractions elicited by repeated injections of oxytocin with ED50 = 3.5 mg/kg i.v. and 89 mg/kg p.o., respectively. Compound 1 significantly inhibits spontaneous uterine contractions in pregnant rats near term when administered intravenously or orally. We conclude that compound 1 is a potent, selective, and orally active nonpeptide oxytocin receptor antagonist, which is a suitable candidate for evaluation as a potential tocolytic agent for the management of preterm labor.


Subject(s)
Imines/pharmacology , Pyrrolidines/pharmacology , Receptors, Oxytocin/antagonists & inhibitors , Uterine Contraction/drug effects , Anesthesia , Animals , CHO Cells , Cells, Cultured , Cricetinae , Dinoprost/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Oxytocin/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Vasopressin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...