Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 35(4): 219-27, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10478802

ABSTRACT

The differentiation grade of cells in culture is dependent on the composition of the culture medium. Two commonly used myogenic cell lines, mouse C2C12 and rat L6, usually differentiate at a low concentration of horse serum. In this study we compared the effect of horse serum with a medium containing a low percentage of Ultroser G and rat brain extract. The maturation grade was evaluated on the basis of various biochemical, (immuno)histochemical and cell-physiological parameters. Substitution of horse serum by Ultroser G and rat brain extract during the differentiation phase resulted in a higher maturation grade of the myotubes of both cell lines, on the basis of creatine kinase activity and the diameter of the myotubes. In addition, the C2C12 myotubes display cross-striation, contain a higher percentage of creatine kinase muscle-specific isoenzyme MM, show a ninefold increase in acetylcholine receptor (AChR) clusters, form a continuous basement membrane, and have a lower resting cytosolic Ca2+ concentration. L6 myotubes show a fivefold increase in AChR clusters and a twofold increase in the expression of the mRNA of the epsilon-subunit of AChR.C2C12 cells show spontaneous contraction and response of cytosolic Ca2+ to various stimulants in contrast to L6 cells which do not. These studies established that the Ultroser G/brain extract medium leads to a higher differentiation grade of both cell lines, but parameters appropriate for use as differentiation markers appear to differ between both cell lines.


Subject(s)
Culture Media , Muscle, Skeletal/pathology , Animals , Blood Proteins , Blood Substitutes , Cell Culture Techniques/methods , Cell Differentiation , Cell Line , Mice , Organic Chemicals , Rats
2.
Eur J Biochem ; 212(1): 237-45, 1993 Feb 15.
Article in English | MEDLINE | ID: mdl-8383040

ABSTRACT

The trivial name 'rubr-erythrin' is a contraction of two other trivial names: rubredoxin (ruber, red) and hemerythrin. It names a protein of undetermined biological function which putatively carries rubredoxin-like mononuclear iron and hemerythrin-like dinuclear iron. The name 'nigerythrin' (niger, black) is an analogy of rubrerythrin. It identifies a second protein of undetermined function which has prosthetic groups similar to rubrerythrin. Rubrerythrin was initially described [LeGall, J., Prickril, B. C., Moura, I., Xavier, A. V., Moura, J. J. G. & Huynh, B.-H. (1988) Biochemistry 27, 1636-1642] as a homodimer with four iron ions arranged into two rubredoxin sites and one inter-subunit dinuclear cluster. Nigerythrin is a novel protein. Here, we report that both proteins are homodimers, each dimer carrying not four but six iron ions in two mononuclear centers and two dinuclear clusters. Rubrerythrin and nigerythrin are probably both located in the cytoplasm; they are differentially characterized with respect to molecular mass, pI, N-terminal sequence, antibody cross-reactivity, optical absorption, EPR spectroscopy, and reduction potentials. All three reduction potentials in both proteins are > +200 mV. These appear too high to be of practical relevance in the cytoplasm of the sulfate reducer Desulfovibrio vulgaris (Hildenborough). We suggest the possibility of a non-redox role for both proteins with all six iron ions in the ferrous state.


Subject(s)
Bacterial Proteins/chemistry , Desulfovibrio vulgaris/chemistry , Ferredoxins/chemistry , Hemerythrin/analogs & derivatives , Iron/analysis , Amino Acid Sequence , Bacterial Proteins/analysis , Bacterial Proteins/immunology , Electron Spin Resonance Spectroscopy , Ferredoxins/analysis , Ferredoxins/immunology , Hemerythrin/analysis , Hemerythrin/chemistry , Hemerythrin/immunology , Molecular Sequence Data , Oxidation-Reduction , Rubredoxins , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...