Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
2.
Fortune Journal of Health Sciences ; 6: 96-102, Mar. 23, 2023. graf, tab
Article in English | Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP, SESSP-IALACERVO | ID: biblio-1555239

ABSTRACT

Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, is a public health problem, associated with high levels of morbidity and mortality, capable of causing outbreaks or epidemics, but preventable through vaccination. In Brazil, the main serogroups isolated are C and B. The last epidemic occurred in the '80s, in São Paulo, because of a B:4:P1.15 strain. Adult Swiss mice were immunized with outer membrane vesicles (OMV) of N. meningitidis strain C:4:P1.15, adjuvanted by the cationic lipid dioctadecyldimethylammonium bromide in bilayer fragments (DDA-BF), administered via prime-booster (intranasal/subcutaneous) scheme. The humoral response was assessed by Immunoblotting and ELISA, using homologous immunization strain and a different serogroup but equal serosubtype strain, N. meningitidis B:4:P1.15. Immunoblotting revealed the recognition of antigens associated with the molecular weight of Porin A and Opacity proteins, which are immunogenic but highly heterogeneous, and Tbp and NspA, which are more homogeneous between meningococci strains. ELISA results showed antibody production that persisted after 190 days and recognized the C:4:P1.15 and the B:4:P1.15 strains, with high avidity index. The adjuvanted group recognized antigens following the IN prime and had a higher avidity index against the heterologous strain. DDA-BF improved the humoral response, but the OMV alone induced high avidity index antibodies as well. Even though these are preliminary results, we see it as a promising approach for affordable meningococcal immunization in developing countries, at outbreak or epidemic situations. (AU)


Subject(s)
Bromides , Immunization , Cross Reactions , Meningitis, Meningococcal , Neisseria meningitidis
3.
J Immunol Methods ; 512: 113387, 2023 01.
Article in English | MEDLINE | ID: mdl-36442652

ABSTRACT

The avidity index (AI) measures the binding strength between the antibody and the antigen, reflecting the affinity maturation. It can be measured by a modified ELISA, adding a chaotropic agent to disrupt the antigen x antibody interaction. However, details of the protocols used affect the final results. We compared the AI of mice sera after a three-dose immunization with meningococcal antigens using different adjuvants. The AI was assessed using potassium thiocyanate (KSCN) and urea as chaotropic agents, incubated at 4 °C, room temperature (RT) and 37 °C. KSCN presented statistically different results when the incubation was set at 4 °C vs RT and 4 °C vs 37 °C, thus, the mean AI obtained were lower. For Urea, 4 °C vs 37 °C presented relevant differences. Using whole-cells suspensions or OMVs as coating antigen provided similar results in some protocols. Thus, the affinity maturation was assessed after each immunization dose and adjuvant use (aluminium hydroxide and dimethyldioctadecylammonium bromide) supported affinity maturation. It is important to study the AI as a functional parameter of humoral response, and both KSCN and Urea are suitable chaotropic agents, however, the protocols should be standardized considering the nature of the antigen, the chaotropic activity and overall laboratory conditions. Adjuvants are important tools to improve antibody avidity following immunization.


Subject(s)
Antigens , Immunoglobulin G , Animals , Mice , Temperature , Enzyme-Linked Immunosorbent Assay/methods , Antibody Affinity , Vaccination , Urea
4.
Pathog Dis ; 80(1)2022 10 19.
Article in English | MEDLINE | ID: mdl-36220147

ABSTRACT

Adjuvants are important components of vaccines, increasing immunogenicity and modulating the immune response. SARS-CoV-2 vaccines are still being developed in order to improve worldwide access to immunization. Specific populations should be addressed in these investigations, such as pregnant women-to protect both mothers and neonates. In this study, female adult mice were immunized with Receptor-binding domain (RBD) from SARS-CoV-2 adjuvanted by a mixture of DDA and Saponin and put to mating to verify the maternal transference of IgG. For comparison, other group received RBD adjuvanted by OMVs from Neisseria meningitidis and Alum. The adjuvants enhanced IgG production and neutralization. DDA/Sap contributed to increase IgG1, IgG2a, IgG2b, and IgG3 isotypes. Total IgG avidity was considered high, as well as IgG1, IgG2a, and IgG2b avidity. IgG antibodies were effectively transferred to the offspring, predominantly IgG2a, IgG2b, and IgG3. The passive transferred immunoglobulin maintained the neutralizing ability, although it lost avidity. ELISA data was confirmed in Dot-ELISA and immunoblotting assays. DDA and Saponin seem a promising adjuvant mixture to enhance the humoral response of SARS-CoV-2 antigens. Further studies considering the effects of maternal immunization in the protection of offspring are needed, regardless the platform used in COVID-19 vaccines.


Subject(s)
COVID-19 , Saponins , Animals , Female , Humans , Mice , Pregnancy , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulin G , SARS-CoV-2
5.
Diseases ; 10(3)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35892740

ABSTRACT

The meningococcal disease is a global health threat, but is preventable through vaccination. Adjuvants improve meningococcal vaccines and are able to trigger different aspects of the immune response. The present work evaluated the immune response of mice against Neisseria meningitidis outer membrane vesicles (OMV) complexed with the adjuvants aluminium hydroxide (AH), via subcutaneous route; and dimethyldioctadecylammonium bromide (DDA) or Saponin (Sap), via intranasal/subcutaneous routes. ELISA demonstrated that all adjuvants increased IgG titers after the booster dose, remaining elevated for 18 months. Additionally, adjuvants increased the avidity of the antibodies and the bactericidal titer: OMVs alone were bactericidal until 1:4 dilution but, when adjuvanted by Alum, DDA or Sap, it increased to 1/32. DDA and Sap increased all IgG isotypes, while AH improved IgG1 and IgG2a levels. Thus, Sap led to the recognition of more proteins in Immunoblot, followed by DDA and AH. Sap and AH induced higher IL-4 and IL-17 release, respectively. The use of adjuvants improved both cellular and humoral immune response, however, each adjuvant contributed to particular parameters. This demonstrates the importance of studying different adjuvant options and their suitability to stimulate different immune mechanisms, modulating the immune response.

7.
Immunology ; 167(2): 124-138, 2022 10.
Article in English | MEDLINE | ID: mdl-35751397

ABSTRACT

Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality rates. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines.


Subject(s)
Immunity, Mucosal , Vaccines , Adjuvants, Immunologic , Mucous Membrane , Vaccination
8.
J Clin Med ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35329828

ABSTRACT

The Enzyme-Linked Immunosorbent Assay is a versatile technique, which can be used for several applications. It has enormously contributed to the study of infectious diseases. This review highlights how this methodology supported the science conducted in COVID-19 pandemics, allowing scientists to better understand the immune response against SARS-CoV-2. ELISA can be modified to assess the functionality of antibodies, as avidity and neutralization, respectively by the standardization of avidity-ELISA and surrogate-neutralization methods. Cellular immunity can also be studied using this assay. Products secreted by cells, like proteins and cytokines, can be studied by ELISA or its derivative Enzyme-linked immunospot (ELISpot) assay. ELISA and ELISA-based methods aided the area of immunology against infectious diseases and is still relevant, for example, as a promising approach to study the differences between natural and vaccine-induced immune responses against SARS-CoV-2.

9.
Pathogens ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36678369

ABSTRACT

Since late 2019 and early 2020, with the emergence of the COVID-19 pandemic, scientists are rushing to develop treatment and prevention methods to combat SARS-CoV-2. Among these are vaccines. In view of this, the use of animals as experimental models, both to investigate the immunopathology of the disease and to evaluate the efficacy and safety of vaccines, is mandatory. This work aims to describe, through recent scientific articles found in reliable databases, the animal models used for the in vivo testing of COVID-19 vaccines, demonstrating some possibilities of more advantageous/gold-standard models for SARS-CoV-2 vaccines. The majority of the studies use rodents and primates. Meanwhile, the most adequate model to be used as the gold standard for in vivo tests of COVID-19 vaccines is not yet conclusive. Promising options are being discussed as new tests are being carried out and new SARS-CoV-2 variants are emerging.

11.
Biomed J ; 44(4): 433-438, 2021 08.
Article in English | MEDLINE | ID: mdl-34493482

ABSTRACT

Antibody avidity is an important parameter to evaluate immune response, being useful to evaluate vaccine responses and helping to distinguish acute and latent infection. The antibody avidity can be measured by different methods, yet the most common is a modified ELISA. The utilization of commercial kits or in-house methods to evaluate antibody avidity have been adopted more and more, although the lack of standardization between different assays may generate a lot of variation in the process, making it hard to compare the results generated.


Subject(s)
Immunoglobulin G , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Humans , Reference Standards
12.
Vaccine ; 38(48): 7674-7682, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33082014

ABSTRACT

Outer membrane vesicles (OMVs) of Neisseria meningitidis contain important antigens to trigger an immune response against meningococci and have been studied as vaccines compounds. The immune response to a vaccine may be affected by its constitution and route of administration. Therefore, Swiss mice were immunized by different routes with OMVs of N. meningitidis B with dimethyl dioctadecyl ammonium bromide in bilayer fragments (DDA-BF) or aluminum hydroxide (AH) as adjuvants. The adjuvants and different routes were compared regarding the immune responses by ELISA, western blot, delayed type hypersensitivity (DTH) and histopathologic analysis. The antigenic preparation generated humoral and cellular immune responses. In quantitative analyzes, in general, AH was superior to DDA-BF. However, analysis such as IgG avidity index, bactericidal activity and immunoblot, revealed no important differences regarding the adjuvant or route of immunization. Regarding the parameters tested, it was not possible to define a superiority between the adjuvants and routes of immunization proposed by this study.


Subject(s)
Antibodies, Bacterial , Neisseria meningitidis , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Bacterial Outer Membrane Proteins , Immunization , Mice , Neisseria meningitidis/immunology
13.
Pathog Dis ; 78(5)2020 07 01.
Article in English | MEDLINE | ID: mdl-32639524

ABSTRACT

The elderly are more likely to die when infected with Neisseria meningitidis. Aging is associated with immune system dysfunctions that impair responses to vaccines and infections. Therefore, immunization of middle-aged individuals could be beneficial. This study aims to evaluate the immunogenicity of N. meningitidis B outer membrane vesicles (OMVs) complexed to two different adjuvants. Middle-aged BALB/c and A/Sn mice were immunized and subsequent immune response was assessed by ELISA, immunoblotting and ELISpot. IgG levels were similar between the animals immunized with OMVs complexed to adjuvants. A total of 235 days after the last immunization only A/Sn mice presented higher IgG levels than those observed in the baseline, especially the group immunized with OMVs and aluminum hydroxide. The predominant IgG subclasses were IgG2a and IgG2b. Immunization with the three-dose regimen generated IgG antibodies that recognized a variety of antigens present in the homologous and heterologous meningococcal OMVs evaluated. There was an increase in the frequency of antigen-specific IFN-γ secreting splenocytes, after in vitro stimulation, in mice immunized with OMVs and adjuvants compared to the control group, almost 1 year after the last immunization. Both adjuvants showed similar performance. Immunization of middle-aged mice has generated a robust immune response and it appears to be advantageous.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Extracellular Vesicles/immunology , Immunity , Meningococcal Vaccines/immunology , Neisseria meningitidis/immunology , Adjuvants, Immunologic , Animals , Antibodies, Bacterial , Antibody Affinity , Female , Immunoglobulin G/blood , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Vaccination
14.
Ther Adv Vaccines Immunother ; 8: 2515135520919195, 2020.
Article in English | MEDLINE | ID: mdl-32435751

ABSTRACT

BACKGROUND: Neisseria meningitidis is the main cause of bacterial meningitis in Brazil, where the main serogroups isolated are B and C; however, the serogroup W has recently emerged. LPS and type IV pili are important virulence factors that increase meningococci pathogenicity. METHODS: The characterization of Lipopolysaccharide (LPS) and type IV pili in 19 meningococci strains of serogroup B, 21 of serogroup C, 45 of serogroup W and 28 of serogroup Y, isolated in Brazil between 2011 and 2017, was conducted using the Enzyme-linked Immunosorbent Assay (Dot- ELISA) technique and monoclonal antibodies. RESULTS: We would like to emphasize the importance of characterizing relevant antigens, such as pili and LPS, the use of monoclonal antibodies to support it, and how such studies improve vaccine development and monitoring. Most of the strains studied presented L3,7,9 LPS and type IV pili; both antigens are associated with the capacity to cause invasive disease. CONCLUSION: Due to the impact of meningococcal disease, it is important to maintain and improve vaccine studies. Epitopes characterization provides data about the virulence of circulating strains. The use of monoclonal antibodies and serological techniques are relevant and support vaccine development.

15.
Ther Adv Vaccines Immunother ; 7: 2515135519894825, 2019.
Article in English | MEDLINE | ID: mdl-31853514

ABSTRACT

BACKGROUND: Immunization against Neisseria meningitidis is important for public health. Vaccines composed of cross-reactivity antigens avoid strain-specific responses, ensuring more comprehensive protection. METHODS: The cross-reactivity between three strains from the last outbreak of N. meningitidis in Brazil was assessed in our studies, using enzyme-linked immunosorbent assay (ELISA) and immunoblotting assays. RESULTS: Both assays verifed a similar humoral response between the strains evaluated. Patterns of antigen recognition differed with each dose evaluated. CONCLUSIONS: We observed that immunization with N. meningitidis B outer membrane vesicles (OMVs) led to the production of antibodies that recognized antigens of heterologous strains, indicating possible protection against these evaluated strains.

16.
São Paulo; s.n; 2019. 47 p. graf, tab, ilus.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP, SESSP-IALACERVO, SESSP-ESPECIALIZACAOSESPROD, Sec. Est. Saúde SP | ID: biblio-1010110

ABSTRACT

Neisseria meningitidis é a principal causa da meningite bacteriana no Brasil, o que a torna alvo de vigilância epidemiológica. É classificada em diferentes sorogrupos que se distribuem pelo mundo, sendo que, no Brasil, os principais sorogrupos isolados são B e C, contudo, recentemente tem sido vista a emergência do sorogrupo W. Outros países da América também reportaram aumento da doença meningocócica provocada pelos sorogrupos W e Y. O lipopolissacarídeo (LPS) e o pili tipo IV são importantes fatores de virulência para adesão às células do hospedeiro, processo indispensável para estabelecimento da doença. Foi conduzida a caracterização do pili e do LPS por meio de anticorpos monoclonais e da técnica Dot-ELISA em cepas de meningococos dos sorogrupos W e Y isoladas no Brasil entre 2014 a 2017, previamente classificadas em sorogrupo...(AU)


Subject(s)
Serogroup , Antibodies , Neisseria
17.
Vet Parasitol ; 250: 78-84, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29329629

ABSTRACT

Rhipicephalus microplus is a vector of cattle tick fever, a disease caused by the protozoans Babesia bovisand B. bigemina, and also anaplasmosis, produced by the Rickettsiales Anaplasma marginale. These tick-borne pathogens cause considerable losses to Brazilian livestock breeders and represent an obstacle to the expanded use of taurine breeds due to their higher sensitivity to ticks and hemoparasites compared to zebu breeds. Differences in the susceptibility to hemoparasites were also verified within breeds, suggesting that may be possible to select a most resistant phenotype. Therefore, repeatability of R. microplus counts and copy number of hemoparasites DNA were estimated, along with correlations between themselves, aiming to verify if those measures can be used as parameters to classify animals according to their parasite resistance degrees. Forty-two Canchim females kept on pastures naturally infested by ticks were evaluated for the level of infestation by R. microplus and infection by B. bovis, B. bigemina, and A. marginale. Twenty-four evaluations were performed once a month, for adult female ticks counts and blood samplings. The experimental period was divided into four phases, according to the animals age range: Phase 1: 8 to 13 months (collections 1 to 6); phase 2: 14 to 19 months (collections 7 to 12); phase 3: 20 to 25 months (collections 13 to 18), and phase 4: 26 to 31 months (collections 19 to 24). Blood samples were submitted to absolute quantification of hemoparasites DNA sequences using qPCR. The hemoparasite and tick counts data were transformed for normalization and were analyzed using mixed models. Among three species of hemoparasites studied, A. marginale presented the highest level of infection. During phase 3, B. bigemina presented higher infection levels (p < 0.05) compared to B. bovis, whereas no differences were observed in other phases. Estimated repeatabilities for parasite infection levels varied from low to moderate during our experiment. There were low correlations between tick counts and parasite infection levels, and between parasite infection levels from different species by themselves. Based on these results, under conditions of the present study, we suggest that it is possible to identify animals presenting a most resistant phenotype against infection by both hemoparasites and ticks. Moreover, the animal age may be an important factor related to resistance against these pathogens. The data obtained shed more light on the resistance to hemoparasites studied.


Subject(s)
Cattle Diseases/immunology , Cattle Diseases/parasitology , Tick Infestations/veterinary , Anaplasma/genetics , Anaplasmosis/blood , Anaplasmosis/immunology , Anaplasmosis/transmission , Animals , Babesia/genetics , Babesiosis/blood , Babesiosis/immunology , Babesiosis/transmission , Cattle , Cattle Diseases/blood , Disease Resistance , Female , Parasite Load , Rhipicephalus/physiology , Tick Infestations/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...