Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 142(1): 212-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34252398

ABSTRACT

Previous cross-sectional studies have shown that skin microbiomes in adults are distinct from those in children. However, the human skin microbiome in individuals as they sexually mature has not been studied as extensively. We performed a prospective, longitudinal study to investigate the puberty-associated shifts in skin microbiota. A total of 12 healthy children were evaluated every 6-18 months for up to 6 years. Using 16S ribosomal RNA (V1-V3) and internal transcribed spacer 1 amplicon sequencing analyzed with Divisive Amplicon Denoising Algorithm 2, we characterized the bacterial and fungal communities of five different skin and nares sites. We identified significant alterations in the composition of skin microbial communities, transitioning toward a more adult microbiome, during puberty. The microbial shifts were associated with Tanner stages (classification method for the degree of sexual maturation) and showed noticeable sex-specific differences. Over time, female children demonstrated a predominance of Cutibacterium with decreasing diversity. Among fungi, Malassezia predominated at most skin sites in more sexually mature subjects, which was more pronounced in female children. The higher relative abundances of these lipophilic taxa-C. acnes and M. restricta-were strongly associated with serum sex hormone concentrations with known influence on sebaceous gland activity. Taken together, our results support the relationship between sexual maturation, skin physiology, and the skin microbiome.


Subject(s)
Malassezia/genetics , Microbiota/genetics , Propionibacteriaceae/genetics , RNA, Ribosomal, 16S/genetics , Sebaceous Glands/physiology , Skin/microbiology , Adult , Child , Child, Preschool , Female , Gonadal Steroid Hormones/blood , Humans , Infant , Male , Prospective Studies , Puberty , Sex Characteristics
2.
Sci Transl Med ; 13(625): eabd8077, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34936382

ABSTRACT

Although systemic antibiotics are critical in controlling infections and reducing morbidity and mortality, overuse of antibiotics is presumed to contribute to negative repercussions such as selection of antimicrobial-resistant organisms and collateral damage to commensal microbes. In a prospective, randomized study of four clinically relevant antibiotic regimens [doxycycline (20 mg or 100 mg), cephalexin, or trimethoprim/sulfamethoxazole], we investigated microbial alterations on skin after administration of systemic antibiotics to healthy human volunteers. Samples from different skin and oral sites, as well as stool, were collected before, during, and up to 1 year after antibiotic use, and shotgun metagenomic sequencing was performed. Taxonomic analysis showed that subjects receiving doxycycline 100 mg and trimethoprim/sulfamethoxazole (TMP/SMX) exhibited greater changes to their skin microbial communities, as compared to those receiving other regimens or untreated controls. Oral and stool microbiota also demonstrated fluctuations after antibiotics. Bacterial culturing in combination with whole-genome sequencing revealed specific emergence, expansion, and persistence of antibiotic-resistant staphylococci harboring tetK or tetL and dfrC or dfrG genes in all subjects who received doxycycline 100 mg or TMP/SMX, respectively. Last, analysis of metagenomic data revealed an increase of genes involved in gene mobilization, indicating stress responses of microbes to antibiotics. Collectively, these findings demonstrate direct, long-lasting effects of antibiotics on skin microbial communities, highlighting the skin microbiome as a site for the development and persistence of antibiotic resistance and the risks of overprescribing.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Humans , Prospective Studies , Trimethoprim, Sulfamethoxazole Drug Combination
3.
Endocrinology ; 150(6): 2611-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19213832

ABSTRACT

Recent evidence supports the idea that insulin signaling through the insulin receptor substrate/phosphatidyl-inositol 3-kinase/Akt pathway is involved in the maintenance of beta-cell mass and function. We previously identified the insulin-response element binding protein-1 (IRE-BP1) as an effector of insulin-induced Akt signaling in the liver, and showed that the 50-kDa carboxyl fragment confers the transcriptional activity of this factor. In this investigation we found that IRE-BP1 is expressed in the alpha, beta, and delta-cells of the islets of Langerhans, and is localized to the cytoplasm in beta-cells in normal rats, but is reduced and redistributed to the islet cell nuclei in obese Zucker rats. To test whether IRE-BP1 modulates beta-cell function and insulin secretion, we used the rat insulin II promoter to drive expression of the carboxyl fragment in beta-cells. Transgenic expression of IRE-BP1 in FVB mice increases nuclear IRE-BP1 expression, and produces a phenotype similar to that of type 2 diabetes, with hyperinsulinemia, hyperglycemia, and increased body weight. IRE-BP1 increased islet type I IGF receptor expression, potentially contributing to the development of islet hypertrophy. Our findings suggest that increased gene transcription mediated through IRE-BP1 may contribute to beta-cell dysfunction in insulin resistance, and allow for the hypothesis that IRE-BP1 plays a role in the pathophysiology of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Insulin-Secreting Cells/metabolism , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 1/metabolism , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology , Glucose/metabolism , Hyperinsulinism/metabolism , Hyperinsulinism/pathology , Hyperinsulinism/physiopathology , Insulin/metabolism , Insulin Resistance/physiology , Insulin-Secreting Cells/pathology , Mice , Mice, Transgenic , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , Phenotype , Rats , Rats, Zucker , Somatostatin-Secreting Cells/metabolism , Somatostatin-Secreting Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...