Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973674

ABSTRACT

The development of adsorbents for air pollutant remediation and effective monitoring is of interest. Then, the effect of the APTES functionalization ratio on the impact of the adsorption and detection of SO2 molecules was evaluated. The higher APTES functionalization material (SBA-15_6.1APTES) shows a high uptake of 1.15 mmol g-1 at 0.001 bar and 298 K. Fluorescence, time-resolved photoluminescence, and quantum yield experiments revealed a turn-on effect specifically for SO2 molecules, indicating high selectivity, suggesting host-to-guest energy transfer. Attractively, XPS measurement provided an understanding of the mechanism, suggesting hydrogen bonding and dipole-dipole interactions as the main interactions between SO2 molecules and SBA-15_6.1APTES. DFT calculations were performed to confirm these interactions. Furthermore, this study highlights the application of SBA-15 materials with different amino modifications for SO2 treatment and provides insight into the interaction mechanism using experimental techniques.

2.
Heliyon ; 10(2): e24645, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304793

ABSTRACT

Carbon capture, utilization, and storage (CCUS) technology offer promising solution to mitigate the threatening consequences of large-scale anthropogenic greenhouse gas emissions. Within this context, this report investigates the influence of NiO deposition on the Li4SiO4 surface during the CO2 capture process and its catalytic behavior in hydrogen production via dry methane reforming. Results demonstrate that the NiO impregnation method modifies microstructural features of Li4SiO4, which positively impact the CO2 capture properties of the material. In particular, the NiO-Li4SiO4 sample captured twice as much CO2 as the pristine Li4SiO4 material, 6.8 and 3.4 mmol of CO2 per gram of ceramic at 675 and 650 °C, respectively. Additionally, the catalytic results reveal that NiO-Li4SiO4 yields a substantial hydrogen production (up to 55 %) when tested in the dry methane reforming reaction. Importantly, this conversion remains stable after 2.5 h of reaction and is selective for hydrogen production. This study highlights the potential of Li4SiO4 both a support and a captor for a sorption-enhanced dry reforming of methane. To the best of our knowledge, this is the first report showcasing the effectiveness of Li4SiO4 as an active support for Ni-based catalysis in the dry reforming of methane. These findings provide valuable insights into the development of this composite as a dual-functional material for carbon dioxide capture and conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...