Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(16)2022 08 18.
Article in English | MEDLINE | ID: mdl-36010649

ABSTRACT

Oxidative stress is closely linked to Alzheimer's disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Hydrogen Peroxide/pharmacology , Neuroblastoma/metabolism , Oxidative Stress , Plasmalogens/metabolism , Reactive Oxygen Species/metabolism , Sphingomyelins , Vitamin B 12/pharmacology
2.
Biomolecules ; 11(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34827697

ABSTRACT

Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.


Subject(s)
Plasmalogens , Animals , Carnitine , Cholecalciferol , Ethanolamine , Mice
3.
J Pers Med ; 10(4)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066497

ABSTRACT

miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue.

4.
FASEB J ; 32(6): 3434-3447, 2018 06.
Article in English | MEDLINE | ID: mdl-29401633

ABSTRACT

Hydroxysteroid (17ß) dehydrogenases (HSD17Bs) form an enzyme family characterized by their ability to catalyze reactions in steroid and lipid metabolism. In the present study, we characterized the phenotype of HSD17B13-knockout (HSD17B13KO) mice deficient in Hsd17b13. In these studies, hepatic steatosis was detected in HSD17B13KO male mice, indicated by histologic analysis and by the increased triglyceride concentration in the liver, whereas reproductive performance and serum steroid concentrations were normal in HSD17B13KO mice. In line with these changes, the expression of key proteins in fatty acid synthesis, such as FAS, acetyl-CoA carboxylase 1, and SCD1, was increased in the HSD17B13KO liver. Furthermore, the knockout liver showed an increase in 2 acylcarnitines, suggesting impaired mitochondrial ß-oxidation in the presence of unaltered malonyl CoA and AMPK expression. The glucose tolerance did not differ between wild-type and HSD17B13KO mice in the presence of lower levels of glucose 6-phosphatase in HSD17B13KO liver compared with wild-type liver. Furthermore, microgranulomas and increased portal inflammation together with up-regulation of immune response genes were observed in HSD17B13KO mice. Our data indicate that disruption of Hsd17b13 impairs hepatic-lipid metabolism in mice, resulting in liver steatosis and inflammation, but the enzyme does not play a major role in the regulation of reproductive functions.-Adam, M., Heikelä, H., Sobolewski, C., Portius, D., Mäki-Jouppila, J., Mehmood, A., Adhikari, P., Esposito, I., Elo, L. L., Zhang, F.-P., Ruohonen, S. T., Strauss, L., Foti, M., Poutanen, M. Hydroxysteroid (17ß) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice.


Subject(s)
17-Hydroxysteroid Dehydrogenases/deficiency , Fatty Liver/enzymology , Lipid Metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Inflammation/enzymology , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Knockout , Mitochondria, Liver/enzymology , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Oxidation-Reduction , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
5.
PPAR Res ; 2017: 7058424, 2017.
Article in English | MEDLINE | ID: mdl-28167956

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-dependent nuclear receptors, which control the transcription of genes involved in energy homeostasis and inflammation and cell proliferation/differentiation. Alterations of PPARs' expression and/or activity are commonly associated with metabolic disorders occurring with obesity, type 2 diabetes, and fatty liver disease, as well as with inflammation and cancer. Emerging evidence now indicates that microRNAs (miRNAs), a family of small noncoding RNAs, which fine-tune gene expression, play a significant role in the pathophysiological mechanisms regulating the expression and activity of PPARs. Herein, the regulation of PPARs by miRNAs is reviewed in the context of metabolic disorders, inflammation, and cancer. The reciprocal control of miRNAs expression by PPARs, as well as the therapeutic potential of modulating PPAR expression/activity by pharmacological compounds targeting miRNA, is also discussed.

6.
Semin Liver Dis ; 35(1): 12-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25632931

ABSTRACT

Overweight and obesity, insulin resistance and diabetes, chronic alcoholism, as well as infection by specific genotypes of hepatitis C viruses are all associated with an excessive and chronic ectopic accumulation of fat in the liver (steatosis). If the underlining causes of steatosis development are not resolved, progression toward more severe liver diseases such as inflammation, fibrosis, and cirrhosis can then occur with time. These hepatic metabolic and histological disorders are commonly referred to as fatty liver disease (FLD) and result from multiple deregulated molecular mechanisms controlling hepatic homeostasis. Among these mechanisms, deregulation of a whole network of small noncoding RNAs called microRNAs (miRNAs), which regulate gene expression at a posttranscriptional level, critically contributes to the development and progression of FLD. Specific miRNAs secreted in body fluids are also emerging as useful biomarkers of FLD and therapeutic targeting of miRNAs is currently being evaluated. The authors discuss recent findings highlighting the role and complexity of miRNA regulatory networks, which critically contribute to the development of FLD. As well, the potential therapeutic perspectives for FLD that our understanding of hepatic miRNA biology offers is considered.


Subject(s)
Fatty Liver/genetics , Lipid Metabolism/genetics , Liver Cirrhosis/genetics , Liver/metabolism , MicroRNAs/genetics , Biomarkers/metabolism , Disease Progression , Fatty Liver/drug therapy , Fatty Liver/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Insulin Resistance/genetics , Liver Cirrhosis/metabolism , MicroRNAs/metabolism , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...