Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathophysiology ; 26(3-4): 219-226, 2019.
Article in English | MEDLINE | ID: mdl-31202527

ABSTRACT

Many studies have been dedicated to hypertension and hypercholesterolemia, as they are the primary conditions that influence the unfolded protein response (UPR). However, the concurrent effects of these two factors are unknown. Our research used spontaneously hypertensive rats (SHR) fed a cholesterol enriched diet (CED) as model of atherosclerosis formation to discover what effect the simultaneous actions of hypertension and hypercholesterolemia have on the UPR. The combination of hypertension and consumption of a CED (not the CED alone) caused the formation of early atherosclerotic features. Both increased expression of the CCAAT-enhancer-binding protein (CHOP) and the insulin induced gene 1 (INSIG1), which is the target gene of the sterol regulatory element-binding protein 1-c (SREBP1-c), and decreased expression of the spliced x-box binding protein1 (sXBP1) mRNA were observed in the SHR fed a CED. Cholesterol overload strongly suppressed glucose regulated protein 78 (GRP78), glucose regulated protein 94 (GRP 94), and the expression of CHOP and INSIG1 mRNA in both normotensive and hypertensive rats. Unlike other UPR factors, the sXBP1 mRNA expression was strongly downregulated in SHR fed a normal diet but upregulated in those fed a CED. The changes to UPR in the SHR fed a CED were associated with improvement of the initially impaired heart function of the rats.

2.
Mol Cell Biochem ; 459(1-2): 73-82, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31104265

ABSTRACT

Currently we face the issues of aging-associated pathologies, particularly those leading to heart failure. With that in mind, in current research we focus on aging and hypertension combination as a widely spread threating problem. In a row with functional and morphological characterization of these aging- and hypertension-associated cardiac changes, we evaluate biogenesis of microRNA-1 being one of major microRNAs in the heart. The aim of this study was to check the hypothesis if dysregulation of microRNA-1 biogenesis is associated with heart failure in aged and especially aged hypertensive rats. The experiments were carried out on male SHR and Wistar rats of age 6 months (young) and 18 months (old). The evaluation of hemodynamic parameters was performed in heart left ventricles of narcotized rats using the ultra-small 2F catheter. The development of fibrosis was determined using light and electron microscopy. Levels of mature and immature forms of microRNA-1 and mRNA encoding the proteins involved in its biogenesis were determined using reverse transcription and quantitative PCR. Aging of both Wistar and SHRs is accompanied with altered hemodynamic parameters compared with correspondent younger mates. SHRs, especially old ones, demonstrated significant heart fibrosis. In aged animals, the level of primary microRNA-1 in Wistar rats were 7 times higher (p < 0.05) and in SHR 17 times higher (p < 0.05) in comparison with young rats of the same strain. We also observed 22 times higher level of immature microRNA-1 in the heart of Wistar and 5.9 times higher level for aged hypertensive rats (p < 0.05) compared to young rats. At the same time, the level of mature microRNA-1 occurred 2.5 and 3.2 times lower in respective groups (p < 0.05). In the current study, we observe the significant dysregulation of microRNA-1 processing in the heart associated with aging and arterial hypertension.


Subject(s)
Aging/metabolism , Heart Failure/metabolism , Hypertension/metabolism , MicroRNAs/biosynthesis , Myocardium/metabolism , Aging/pathology , Animals , Fibrosis , Heart Failure/pathology , Hypertension/pathology , Male , Myocardium/pathology , Rats , Rats, Inbred SHR , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...