Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 424(6950): 788-93, 2003 Aug 14.
Article in English | MEDLINE | ID: mdl-12917688

ABSTRACT

The systematic comparison of genomic sequences from different organisms represents a central focus of contemporary genome analysis. Comparative analyses of vertebrate sequences can identify coding and conserved non-coding regions, including regulatory elements, and provide insight into the forces that have rendered modern-day genomes. As a complement to whole-genome sequencing efforts, we are sequencing and comparing targeted genomic regions in multiple, evolutionarily diverse vertebrates. Here we report the generation and analysis of over 12 megabases (Mb) of sequence from 12 species, all derived from the genomic region orthologous to a segment of about 1.8 Mb on human chromosome 7 containing ten genes, including the gene mutated in cystic fibrosis. These sequences show conservation reflecting both functional constraints and the neutral mutational events that shaped this genomic region. In particular, we identify substantial numbers of conserved non-coding segments beyond those previously identified experimentally, most of which are not detectable by pair-wise sequence comparisons alone. Analysis of transposable element insertions highlights the variation in genome dynamics among these species and confirms the placement of rodents as a sister group to the primates.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Genomics , Vertebrates/genetics , Animals , Chromosomes, Human, Pair 7/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA Transposable Elements/genetics , Genome , Humans , Mammals/genetics , Mutagenesis/genetics , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity
3.
Mol Genet Genomics ; 265(5): 873-82, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11523804

ABSTRACT

Copper metallochaperones represent a new family of soluble, low-molecular-weight proteins that function to deliver copper to specific sites within a cell. How the metallochaperones acquire their copper, however, is not known. In this study, we have conducted a survey of known metal ion transporters in bakers' yeast, Saccharomyces cerevisiae, to identify those that contribute copper to pathways involving the metallochaperones Atxlp and Lys7p. The results indicatethat, in addition to the well known Ctr1p and Ctr3p high-affinity copper transporters, the metallochaperones can acquire their copper through pathways involving the relatively non-specific divalent metal ion transporter Fet4p and the putative low-affinitycopper transporter Ctr2p. We have examined the localization of Ctr2p using an epitope tagged version of the protein and find that Ctr2p does not localize to the cell surface but may operate at the level of the vacuole to mobilize intracellular copper. Inaddition to Ctrlp, Ctr2p, Ctr3p and Fet4p, other metal transport systems can act as upstream donors of copper for the metallochaperones when copper availability in the medium is increased. Although the nature of these auxiliary systems is unknown, they do not appear to involve the yeast members of the Nramp family of divalent transporters, or uptake mechanisms that involve endocytosis. Since vastly different metal transporters located at either the cell surface or intracellular sites can all contribute copper to metallochaperones, it is unlikely that the metallochaperones directly interact with the metal transporters to obtain the metal.


Subject(s)
Antiporters/genetics , Arabidopsis Proteins , Cation Transport Proteins , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Antiporters/metabolism , Copper/metabolism , Copper Transporter 1 , Gene Expression Regulation, Fungal , Genes, Fungal , Membrane Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , SLC31 Proteins , Saccharomyces cerevisiae/metabolism
4.
Mol Cell Biol ; 20(21): 7893-902, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11027260

ABSTRACT

The baker's yeast Saccharomyces cerevisiae expresses three homologues of the Nramp family of metal transporters: Smf1p, Smf2p, and Smf3p, encoded by SMF1, SMF2, and SMF3, respectively. Here we report a comparative analysis of the yeast Smf proteins at the levels of localization, regulation, and function of the corresponding metal transporters. Smf1p and Smf2p function in cellular accumulation of manganese, and the two proteins are coregulated by manganese ions and the BSD2 gene product. Under manganese-replete conditions, Bsd2p facilitates trafficking of Smf1p and Smf2p to the vacuole, where these transport proteins are degraded. However, Smf1p and Smf2p localize to distinct cellular compartments under metal starvation: Smf1p accumulates at the cell surface, while Smf2p is restricted to intracellular vesicles. The third Nramp homologue, Smf3p, is quite distinctive. Smf3p is not regulated by Bsd2p or by manganese ions and is not degraded in the vacuole. Instead, Smf3p is down-regulated by iron through a mechanism that does not involve transcription or protein stability. Smf3p localizes to the vacuolar membrane independently of metal treatment, and yeast cells lacking Smf3p show symptoms of iron starvation. We propose that Smf3p helps to mobilize vacuolar stores of iron.


Subject(s)
Carrier Proteins/biosynthesis , Cation Transport Proteins , Iron-Binding Proteins , Membrane Proteins/biosynthesis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Base Sequence , Blotting, Western , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Down-Regulation , Fluorescent Antibody Technique, Indirect , Gene Deletion , Gene Expression Regulation, Fungal , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Manganese/metabolism , Membrane Proteins/genetics , Models, Biological , Molecular Sequence Data , Mutagenesis, Site-Directed , Plasmids , Protein Isoforms , Protein Processing, Post-Translational , Protein Structure, Secondary , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Time Factors , Vacuoles/metabolism
5.
J Biol Chem ; 274(21): 15041-5, 1999 May 21.
Article in English | MEDLINE | ID: mdl-10329707

ABSTRACT

Saccharomyces cerevisiae Atx1p represents a member of the family of metallochaperone molecules that escort copper to distinct intracellular targets. Atx1p specifically delivers copper to the Ccc2p copper transporter in the Golgi. Additionally, when overproduced, Atx1p substitutes for superoxide dismutase 1 in preventing oxidative damage; however the mechanistic overlap between these functions is unresolved. The crystal structure of Atx1p has been solved recently. By examining a surface electrostatic potential distribution, multiple conserved lysines are revealed on one face of Atx1p. An additional conserved lysine (Lys65) lies in close proximity to the metal binding site. Through site-directed mutagenesis, residues in the metal binding region including Lys65 were found to be necessary for both copper delivery to Ccc2p and for Atx1p antioxidant activity. Copper trafficking to Ccc2p also relied on the lysine-rich face of Atx1p. Surprisingly however, elimination of these lysines did not inhibit the antioxidant activity of Atx1p. We provide evidence that Atx1p does not suppress oxidative damage by a metallochaperone mechanism but may directly consume superoxide. Purified Cu-Atx1p reacts noncatalytically with superoxide anion in vitro. We conclude that the copper-trafficking and antioxidant functions of Atx1p arise from chemically and structurally distinct attributes of this metallochaperone.


Subject(s)
Carrier Proteins , Copper , Fungal Proteins/chemistry , Fungal Proteins/physiology , Saccharomyces cerevisiae Proteins , Antioxidants/metabolism , Crystallography, X-Ray , Fungal Proteins/genetics , Mutation , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...