Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 188(4): 1168-1184, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30854608

ABSTRACT

The intensive production of polycyclic aromatic hydrocarbons by anthropogenic activities is a serious environmental problem. Therefore, new bioremediation methods are required to avoid widespread contamination. In this work, Serratia sp. AC-11 strain isolated from a tropical peat was selected for immobilization into chitosan beads, which were employed in the biodegradation of fluoranthene. The sizes of the produced beads were relatively uniform with an average diameter of 3 mm. The material was characterized by SEM and FT-IR, confirming the cells immobilization and the protective barrier formed by the chitosan surrounding the biomass. The immobilized bacteria were able to degrade 56% of fluoranthene (the initial concentration was 100 mg L-1) in just 1 day at twice the degradation rate achieved by free-living cells. Furthermore, the immobilized bacteria showed excellent removal during five reuse cycles, from 76% to 59% of biodegradation. These results showed the potential of this approach for remediation of contaminated sites.


Subject(s)
Chitosan/chemistry , Fluorenes/metabolism , Serratia/metabolism , Biodegradation, Environmental , Spectroscopy, Fourier Transform Infrared
2.
Adv Food Nutr Res ; 78: 153-92, 2016.
Article in English | MEDLINE | ID: mdl-27452170

ABSTRACT

In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds.


Subject(s)
Aquatic Organisms/enzymology , Biotechnology/methods , Animals , Aquatic Organisms/microbiology , Bacteria/enzymology , Biodegradation, Environmental , Biotransformation , Brazil , Cyanobacteria , Fungi/enzymology , Phaeophyceae , Porifera/enzymology , Rhodophyta
SELECTION OF CITATIONS
SEARCH DETAIL
...