Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(9): e29609, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756580

ABSTRACT

Fresh vegetables have high water content and low acidity, so drying can extend shelf life, allowing the obtaining of alternative flours for the development of new products. The study aimed to investigate the influence of the melon harvest and off-season on the chemical composition of melon (Cantaloupe, Charentais e Honey Dew) flours and the potential application in products. The flours were evaluated for granulometry, morphology, centesimal composition, lipid and mineral content, total phenolic compound (TPC), antioxidant activity, and technological properties. Cakes containing melon flour were produced to replace wheat flour (0, 25, and 50 %) and evaluated for proximate composition, microbiology, and sensory parameters. Flours were classified as fine-grained (MESH >16), except Charentais off-season (medium - MESH 8-16, and fine-grained - MESH >16), and all presented a rough surface and minimal cell wall ruptures. The harvest homogeneously influenced the humidity, as all the off-season flours showed higher levels [17-22 %] (p < 0.05) due to weather conditions. For TPC, Cantaloupe melon flours from the harvest (CFH) [208 mg/100 g] and off-season [877 mg/100 g] stood out (p < 0.05), and the latter showed greater antioxidant potential [328 µmol TE/g]. Palmitic, linoleic, and linolenic acid stood out in all flours, and potassium for minerals (63-78 %) in the harvest and off-season. The harvest and off-season specifically influenced the flour of each variety in swelling power, water solubility, oil absorption, and emulsifying capacity. For cakes with CFH, no thermotolerant coliforms and Escherichia coli were detected, and the mesophilic count was <1.0 CFU/g. The ash, protein, lipid, and fiber contents increased proportionally to melon flour addition (p < 0.05). Sensory acceptance was high for cakes containing 25 and 50 % of CFH [82.78 % and 82.53 %], and most consumers would likely buy the products (4.04 and 3.99) (p < 0.05). The study contributed to knowledge about the seasonality effect and demonstrated the potential use of melon flour in developing new products.

2.
Food Chem ; 348: 129055, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33508595

ABSTRACT

The study evaluated the potential and antioxidant stability of nanoencapsulated carotenoid-rich extract (CE) from Cantaloupe melon (EPG). DPPH and ABTS radical scavenging assays were used to investigate the nanoencapsulation effect on antioxidant potential. CE and EPG stability were evaluated at 25 °C and 5 °C, with and without light (1600 lx) for 60 days, determining the ß-carotene concentration by UHPLC and antioxidant potential by ABTS. The antioxidant potential of carotenoids increased after nanoencapsulation (57-59%). After 60 days, there was low retention of ß-carotene (0-43.6%) in the CE, mainly at 25 °C light (0.00%) and dark (10.0%), and total loss of activity in the four conditions. EPG preserved the ß-carotene concentration in the dark at 25 °C (99.0%) and in the light (83.1%) and dark (99.0%) at 5 °C, maintaining the antioxidant potential (68.7-48.3%). Therefore, EPG enhanced and stabilized the antioxidant potential of carotenoids, beneficial to human health.


Subject(s)
Antioxidants/chemistry , Antioxidants/isolation & purification , Carotenoids/analysis , Cucumis melo/chemistry , Food Storage , Gelatin/chemistry , Nanostructures/chemistry , Capsules , Fruit/chemistry , Humans
3.
Food Chem ; 270: 562-572, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30174087

ABSTRACT

Cantaloupe melon carotenoids were encapsulated in porcine gelatin, whey protein isolate and concentrate by emulsification O/W to evaluate which agent could promote an increase in water solubility, and color stability in yogurt. The average particle size obtained was 59.3 (2.60) nm-161.0 (27.30) nm. Encapsulated crude extract in porcine gelatin presented the smallest size and polydispersity index [0.4 (0.04)], and showed sphericity, smooth surface and low agglomeration in SEM. These results associated to the good chemical interaction between the raw materials shown by FTIR, justify the increase in water solubility [0.072 (0.007) mg.mL-1] compared to the crude extract [0.026 (0.003) mg.mL-1]. The yogurt added with this nanoencapsulate remained stable for 60 days, unlike the crude extract. The results show that the nanoencapsulation using gelatin increased water solubility and the potential of application of melon carotenoids in food as natural dyes.


Subject(s)
Carotenoids/analysis , Cucumis melo/chemistry , Color , Solubility
4.
Molecules ; 23(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279336

ABSTRACT

Genipa americana is a medicinal plant popularly known as "jenipapo", which occurs in Brazil and belongs to the Rubiaceae family. It is a species widely distributed in the tropical Central and South America, especially in the Cerrado biome. Their leaves and fruits are used as food and popularly in folk medicine to treat anemias, as an antidiarrheal, and anti-syphilitic. Iridoids are the main secondary metabolites described from G. americana, but few studies have been conducted with their leaves. In this study, the aim was to chemical approach for identify the main compounds present at the extract of G. americana leaves. The powdered leaves were extracted by maceration with EtOH: water (70:30, v/v), following liquid-liquid partition with petroleum ether, chloroform, ethyl acetate and n-butanol. A total of 13 compounds were identified. In addition three flavonoids were isolated from the ethyl acetate fraction: quercetin-3-O-robinoside (GAF 1), kaempferol-3-O-robinoside (GAF 2) and isorhamnetin-3-O-robinoside (GAF 3) and, from n-butanol fraction more two flavonoids were isolated, kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) (GAF 4) and isorhamnetin-3-O-robinoside-7-rhamnoside (GAF 5). Chemical structures of these five flavonoids were elucidated using spectroscopic methods (MS, ¹H and 13C-NMR 1D and 2D). These flavonoids glycosides were described for the first time in G. americana.


Subject(s)
Flavonoids/isolation & purification , Fruit/chemistry , Plant Leaves/chemistry , Rubiaceae/chemistry , Antidiarrheals/chemistry , Antitreponemal Agents/chemistry , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Flavonoids/therapeutic use , Humans , Plant Extracts/chemistry , Tandem Mass Spectrometry
5.
J Pharm Biomed Anal ; 57: 115-9, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-21908131

ABSTRACT

This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets.


Subject(s)
Antitubercular Agents/chemistry , Ethambutol/chemistry , Isoniazid/chemistry , Pyrazinamide/chemistry , Rifampin/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Chromatography, High Pressure Liquid , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...