Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Article in English | MEDLINE | ID: mdl-34894049

ABSTRACT

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Subject(s)
Cigarette Smoking , Metal Nanoparticles , Pulmonary Disease, Chronic Obstructive , Administration, Intranasal , Animals , Bronchoalveolar Lavage Fluid , Gold/pharmacology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Nicotiana
2.
Inflammation ; 43(6): 2232-2244, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32647956

ABSTRACT

Percutaneous collagen induction (PCI) is an alternative treatment for skin dysfunctions, it aims to stimulate collagen production by encouraging normal wound healing that occurs after any trauma by inducing microlesions; also it may be potentiated with the association with drugs such as hyaluronic acid (HA). Our objective was to evaluate the effects of PCI associated with hyaluronic acid (0.9%) on inflammatory process, oxidative stress, and collagen production in rat epidermis. For the study, 36 adult Wistar rats were randomly divided into 6 groups (n = 6): Control; PCI 0.5; PCI 1.0; HA; PCI 0.5 + HA; and PCI 1.0 + HA. The animals were anesthetized, trichotomized, and the application of therapies was performed once; After 7 days, the animals were euthanized for removal of the skin region. Levels of pro-inflammatory (IL1, IL6, TNFα), anti-inflammatory (IL4 and IL10) cytokines and growth factors (FGF, TGFß) were evaluated, besides oxidative stress parameters and histological analysis. In combination groups, there is a decrease in TNFα compared with the control and PCI groups in contrast to a significant increase in anti-inflammatory cytokines and growth factors. Oxidant and oxidative damage levels showed a significant decrease in PCI + HA groups in relation to PCI groups while antioxidant defense increased in PCI + HA groups compared with the control group. The number of fibroblasts was increased in the PCI 1.0 group in relation to the control, HA, and PCI 0.5. The number of blood vessels and collagen area was increased in groups PCI and PCI + HA compared with the HA group. We conclude that the combination of PCI with HA is able to accelerate the acute inflammatory process, reducing its deleterious effects and anticipating the chronic response, contributing to tissue repair.


Subject(s)
Collagen/metabolism , Hyaluronic Acid/metabolism , Inflammation , Oxidative Stress , Animals , Antioxidants/metabolism , Cytokines/metabolism , Fibroblasts/metabolism , Induction Chemotherapy , Male , Percutaneous Coronary Intervention , Rats , Rats, Wistar , Reactive Oxygen Species , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...