Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 390, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195747

ABSTRACT

Magic-angle twisted bilayer graphene can host a variety of gate-tunable correlated states - including superconducting and correlated insulator states. Recently, junction-based superconducting moiré devices have been introduced, enabling the study of the charge, spin and orbital nature of superconductivity, as well as the coherence of moiré electrons in magic-angle twisted bilayer graphene. Complementary fundamental coherence effects-in particular, the Little-Parks effect in a superconducting ring and the Aharonov-Bohm effect in a normally conducting ring - have not yet been reported in moiré devices. Here, we observe both phenomena in a single gate-defined ring device, where we can embed a superconducting or normally conducting ring in a correlated or band insulator. The Little-Parks effect is seen in the superconducting phase diagram as a function of density and magnetic field, confirming the effective charge of 2e. We also find that the coherence length of conducting moiré electrons exceeds several microns at 50 mK. In addition, we identify a regime characterized by h/e-periodic oscillations but with superconductor-like nonlinear transport.

2.
Nano Lett ; 24(2): 601-606, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180909

ABSTRACT

Electronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.

3.
Nat Nanotechnol ; 17(11): 1159-1164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36280761

ABSTRACT

Magic-angle twisted bilayer graphene (MATBG) hosts a number of correlated states of matter that can be tuned by electrostatic doping1-4. Transport5,6 and scanning-probe7-9 experiments have shown evidence for band, correlated and Chern insulators along with superconductivity. This variety of in situ tunable states has allowed for the realization of tunable Josephson junctions10-12. However, although phase-coherent phenomena have been measured10-12, no control of the phase difference of the superconducting condensates has been demonstrated so far. Here we build on previous gate-defined junction realizations and form a superconducting quantum interference device13 (SQUID) in MATBG, where the superconducting phase difference is controlled through the magnetic field. We observe magneto-oscillations of the critical current, demonstrating long-range coherence of superconducting charge carriers with an effective charge of 2e. We tune to both asymmetric and symmetric SQUID configurations by electrostatically controlling the critical currents through the junctions. This tunability allows us to study the inductances in the device, finding values of up to 2 µH. Furthermore, we directly probe the current-phase relation of one of the junctions of the device. Our results show that complex devices in MATBG can be realized and used to reveal the properties of the material. We envision our findings, together with the established history of applications SQUIDs have14-16, will foster the development of a wide range of devices such as phase-slip junctions17 or high kinetic inductance detectors18.

4.
Nano Lett ; 22(15): 6292-6297, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35880910

ABSTRACT

We present an electron interferometer defined purely by electrostatic gating in an encapsulated bilayer graphene. This minimizes possible sample degradation introduced by conventional etching methods when preparing quantum devices. The device quality is demonstrated by observing Aharonov-Bohm (AB) oscillations with a period of h/e, h/2e, h/3e, and h/4e, witnessing a coherence length of many microns. The AB oscillations as well as the type of carriers (electrons or holes) are seamlessly tunable with gating. The coherence length longer than the ring perimeter and semiclassical trajectory of the carrier are established from the analysis of the temperature and magnetic field dependence of the oscillations. Our gate-defined ring geometry has the potential to evolve into a platform for exploring correlated quantum states such as superconductivity in interferometers in twisted bilayer graphene.

5.
Phys Rev Lett ; 128(5): 057702, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179933

ABSTRACT

A unique feature of the complex band structures of moiré materials is the presence of minivalleys, their hybridization, and scattering between them. Here, we investigate magnetotransport oscillations caused by scattering between minivalleys-a phenomenon analogous to magnetointersubband oscillations-in a twisted double bilayer graphene sample with a twist angle of 1.94°. We study and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley conserving scattering to be likely. Finally, we discuss the relevance of our findings for different materials and twist angles.

6.
Science ; 373(6560): 1257-1260, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516786

ABSTRACT

When twisted to angles near 1°, graphene multilayers provide a window on electron correlation physics. Here, we report the discovery of a correlated electron-hole state in double-bilayer graphene twisted to 2.37°. At this angle, the moiré states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with a density-wave state. This state can be tuned without introducing chemical dopants, enabling studies of correlated electron-hole states and their interplay with superconductivity.

7.
Nat Nanotechnol ; 16(7): 760-763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33941917

ABSTRACT

In situ electrostatic control of two-dimensional superconductivity1 is commonly limited due to large charge carrier densities, and gate-defined Josephson junctions are therefore rare2,3. Magic-angle twisted bilayer graphene (MATBG)4-8 has recently emerged as a versatile platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal9-14. Although MATBG appears to be an ideal two-dimensional platform for gate-tunable superconductivity9,11,13, progress towards practical implementations has been hindered by the need for well-defined gated regions. Here we use multilayer gate technology to create a device based on two distinct phases in adjustable regions of MATBG. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable d.c. and a.c. Josephson effects15,16. The ability to tune the superconducting state within a single material circumvents interface and fabrication challenges, which are common in multimaterial nanostructures. This work is an initial step towards devices where gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics17,18 and quantum information technology19,20.

8.
Phys Rev Lett ; 125(17): 176801, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156662

ABSTRACT

Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently. Using a dual-gated geometry we identify and control all possible combinations of minivalley polarization via the population of the two bilayers. An applied displacement field opens a band gap in either of the two bilayers, allowing us to even obtain full minivalley polarization. In addition, the carriers, formerly separated by their minivalley character, are mixed by tuning through a Lifshitz transition, where the Fermi surface topology changes. The high degree of control over the minivalley character of the bulk charge transport in twisted double bilayer graphene offers new opportunities for realizing valleytronics devices such as valley valves, filters, and logic gates.

9.
Nature ; 569(7754): 89-92, 2019 05.
Article in English | MEDLINE | ID: mdl-31019303

ABSTRACT

Majorana zero modes-quasiparticle states localized at the boundaries of topological superconductors-are expected to be ideal building blocks for fault-tolerant quantum computing1,2. Several observations of zero-bias conductance peaks measured by tunnelling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor-semiconductor nanowires3-8. On the other hand, two-dimensional systems offer the alternative approach of confining Majorana channels within planar Josephson junctions, in which the phase difference φ between the superconducting leads represents an additional tuning knob that is predicted to drive the system into the topological phase at lower magnetic fields than for a system without phase bias9,10. Here we report the observation of phase-dependent zero-bias conductance peaks measured by tunnelling spectroscopy at the end of Josephson junctions realized on a heterostructure consisting of aluminium on indium arsenide. Biasing the junction to φ ≈ π reduces the critical field at which the zero-bias peak appears, with respect to φ = 0. The phase and magnetic-field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. As well as providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures11 and are scalable to the complex geometries needed for topological quantum computing9,12,13.

SELECTION OF CITATIONS
SEARCH DETAIL
...