Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38526573

ABSTRACT

Introduction: Ensuring patient safety in minimally invasive surgery (MIS) within the field of pediatric surgery requires systematic and extensive practice. Many groups have proposed mastery learning programs encompassing a range of training methods. However, short courses often have a narrow focus on specific objectives, limiting opportunities for sustained training. Our aim was to analyze our results with an online long-term competency-based and supervised training. Methods: This is a retrospective cohort study with prospective data collection of scores and performance of trainees during online courses from October 2020 to April 2023. Results: All participants (n = 76) were able to set up their personal training gym and complete the intensive stage of the course. The total score evolved from 2.60 ± 0.56 at the first meeting to 3.67 ± 0.61 at the fourth meeting, exhibiting a significant difference (P < .013). A considerable drop out was observed in the follow-up stage, with only 53.8% of the participants completing the course. When compared with the first meeting, they also showed a significant improvement with a mean general score of 3.85 ± 0.25 (P < .013) Conclusion: We have presented a novel online training program, based on continuous training that demonstrated that the unlimited access to a personal training gym allows surgeons to improve and maintain MIS skills.

2.
PLoS One ; 18(12): e0293891, 2023.
Article in English | MEDLINE | ID: mdl-38128001

ABSTRACT

Knowledge of the 10B microdistribution is of great relevance in BNCT studies. Since 10B concentration assesment through neutron autoradiography depends on the correct quantification of tracks in a nuclear track detector, image acquisition and processing conditions should be controlled and verified, in order to obtain accurate results to be applied in the frame of BNCT. With this aim, an image verification process was proposed, based on parameters extracted from the quantified nuclear tracks. Track characterization was performed by selecting a set of morphological and pixel-intensity uniformity parameters from the quantified objects (area, diameter, roundness, aspect ratio, heterogeneity and clumpiness). Their distributions were studied, leading to the observation of varying behaviours in images generated by different samples and acquisition conditions. The distributions corresponding to samples coming from the BNC reaction showed similar attributes in each analyzed parameter, proving to be robust to the experimental process, but sensitive to light and focus conditions. Considering those observations, a manual feature extraction was performed as a pre-processing step. A Support Vector Machine (SVM) and a fully dense Neural Network (NN) were optimized, trained, and tested. The final performance metrics were similar for both models: 93%-93% for the SVM, vs 94%-95% for the NN in accuracy and precision respectively. Based on the distribution of the predicted class probabilities, the latter had a better capacity to reject inadequate images, so the NN was selected to perform the image verification step prior to quantification. The trained NN was able to correctly classify the images regardless of their track density. The exhaustive characterization of the nuclear tracks provided new knowledge related to the autoradiographic images generation. The inclusion of machine learning in the analysis workflow proves to optimize the boron determination process and paves the way for further applications in the field of boron imaging.


Subject(s)
Boron Neutron Capture Therapy , Boron , Autoradiography , Boron/analysis , Boron Neutron Capture Therapy/methods , Neutrons , Machine Learning
3.
Life (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511953

ABSTRACT

The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.

4.
Histochem Cell Biol ; 160(1): 3-10, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37126141

ABSTRACT

Boron neutron capture therapy (BNCT) is a cancer treatment option that combines preferential uptake of a boron compound in tumors and irradiation with thermal neutrons. For treatment planning, the boron concentration in different tissues must be considered. Neutron autoradiography using nuclear track detectors (NTD) can be applied to study both the concentration and microdistribution of boron in tissue samples. Histological sections are obtained from frozen tissue by cryosectioning. When the samples reach room temperature, they undergo an evaporation process, which leads to an increase in the boron concentration. To take this effect into account, certain correction factors (evaporation coefficients, CEv) must be applied. With this aim, a protocol was established to register and analyze mass variation of tissue sections, measured with a semimicro scale. Values of ambient temperature, pressure, and humidity were simultaneously recorded. Reproducible results of evaporation curves and CEv values were obtained for different tissue samples, which allowed the systematization of the procedure. This study could contribute to a more precise determination of boron concentration in tissue samples through the neutron autoradiography technique, which is of great relevance to make dosimetric calculations in BNCT.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Humans , Boron , Autoradiography , Boron Neutron Capture Therapy/methods , Neutrons
5.
Phys Med ; 89: 282-292, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474326

ABSTRACT

PURPOSE: Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the selective damage caused by the products of neutron capture in 10B to tumour cells. BNCT dosimetry strongly depends on the parameters of the dose calculation models derived from radiobiological experiments. This works aims at determining an adequate dosimetry for in-vitro experiments involving irradiation of monolayer-cultured cells with photons and BNCT and assessing its impact on clinical settings. M&M: Dose calculations for rat osteosarcoma UMR-106 and human metastatic melanoma Mel-J cell survival experiments were performed using MCNP, transporting uncharged particles for KERMA determinations, and secondary particles (electrons, protons, 14C, 4He and 7Li) to compute absorbed dose in cultures. Dose-survival curves were modified according to the dose correction factors determined from computational studies. New radiobiological parameters of the photon isoeffective dose models for osteosarcoma and metastatic melanoma tumours were obtained. Dosimetry implications considering cutaneous melanoma patients treated in Argentina with BNCT were assessed and discussed. RESULTS: KERMA values for the monolayer-cultured cells overestimate absorbed doses of radiation components of interest in BNCT. Detailed dose calculations for the osteosarcoma irradiation increased the relative biological effectiveness factor RBE1% of the neutron component in more than 30%. The analysis based on melanoma cases reveals that the use of survival curves based on KERMA leads to an underestimation of the tumour doses delivered to patients. CONCLUSIONS: Considering detailed dose calculation for in-vitro experiments significantly impact on the prediction of the tumor control in patients. Therefore, proposed methods are clinically relevant.


Subject(s)
Boron Neutron Capture Therapy , Melanoma , Skin Neoplasms , Animals , Humans , Male , Melanoma/radiotherapy , Radiometry , Rats , Relative Biological Effectiveness
6.
Appl Radiat Isot ; 165: 109331, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32777741

ABSTRACT

In Argentina, a multi-institutional project has been established to assess the feasibility of applying BNCT ex-situ to the treatment of patients with multiple metastases in both lungs. Within this context, this work aims at applying the neutron autoradiography technique to study boron microdistribution in the lung. A comprehensive analysis of the different aspects for the generation of autoradiographic images of both normal and metastatic BDIX rat lungs was achieved. Histology, boron uniformity, optimal tissue thickness and water content in tissue were explored for the two types of samples. A qualitative and a quantitative analysis were performed. No heterogeneities in uptake were observed in normal lung. Conversely, samples with metastasis showed preferential boron uptake in the tumour areas with respect to surrounding tissue. Surrounding tissue would present a slightly higher uptake of boron than the normal lung. Quantitative results of boron concentration values and ratios determined by neutron autoradiography were obtained. In order to contribute to BNCT dosimetry, further analysis increasing the number of samples is warranted.


Subject(s)
Autoradiography/methods , Boron/pharmacokinetics , Lung/metabolism , Neutrons , Animals , Boron Neutron Capture Therapy/methods , Rats
7.
Microsc Microanal ; 25(6): 1331-1340, 2019 12.
Article in English | MEDLINE | ID: mdl-31648656

ABSTRACT

Our group has reported the imprint formation of biological material on polycarbonate nuclear track detectors by UV-C exposure, which is used as an approach to simultaneously visualize cell imprints and nuclear tracks coming from the boron neutron capture reaction. Considering that the cell nucleus has a higher UV-C absorption than the cytoplasm and that hematoxylin preferentially stains the nucleus, we proposed to enhance the contrast between these two main cell structures by hematoxylin staining before UV-C sensitization. In this study, several experiments were performed in order to optimize UV-C exposure parameters and chemical etching conditions for cell imprint formation using the SK-BR-3 breast cancer cell line. The proposed method improves significantly the resolution of the cell imprints. It allows clear differentiation of the nucleus from the rest of the cell, together with nuclear tracks pits. Moreover, it reduces considerably the UV-C exposure time, an important experimental issue. The proposed methodology can be applied to study the boron distribution independently from the chosen cell line and/or boron compounds.


Subject(s)
Autoradiography/methods , Neutron Activation Analysis/methods , Staining and Labeling/methods , Ultraviolet Rays , Boron/radiation effects , Cell Line, Tumor , Hematoxylin/metabolism , Humans , Trace Elements/radiation effects
8.
Radiat Environ Biophys ; 58(3): 455-467, 2019 08.
Article in English | MEDLINE | ID: mdl-31123853

ABSTRACT

Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.


Subject(s)
Boron Compounds/metabolism , Boron Neutron Capture Therapy/methods , Boron/metabolism , Isotopes/metabolism , Animals , Cheek , Cricetinae , Disease Models, Animal , Mesocricetus , Mouth Neoplasms , Tissue Distribution
9.
Radiat Environ Biophys ; 58(2): 237-245, 2019 05.
Article in English | MEDLINE | ID: mdl-30689023

ABSTRACT

Osteosarcoma is the most common primary malignant tumour of bone in young patients. The survival of these patients has largely been improved due to adjuvant and neo-adjuvant chemotherapy in addition to surgery. Boron neutron capture therapy (BNCT) is proposed as a complementary therapy, due to its ability to inactivate tumour cells that may survive the standard treatment and that may be responsible for recurrences and/or metastases. BNCT is based on neutron irradiation of a tumour enriched in 10B with a boron-loaded drug. Low-energy neutron capture in 10B creates charged particles that impart a high dose to tumour cells, which can be calculated only knowing the boron concentration. Charged particle spectrometry is a method that can be used to quantify boron concentration. This method requires acquisition of the energy spectra of charged particles such as alpha particles produced by neutron capture reactions in thin tissue sections irradiated with low-energy neutrons. Boron concentration is then determined knowing the stopping power of the alpha particles in the sample material. This paper describes the adaptation of this method for bone, with emphasis on sample preparation, experimental set-up and stopping power assessment of the involved alpha particles. The knowledge of boron concentration in healthy bones is important, because it allows for any dose limitation that might be necessary to avoid adverse effects such as bone fragility. The measurement process was studied through Monte Carlo simulations and analytical calculations. Finally, the boron content of bone samples was measured by alpha spectrometry at the TRIGA reactor in Pavia, Italy, and compared to that obtained by neutron autoradiography. The agreement between the results obtained with these techniques confirms the suitability of alpha spectrometry to measure boron in bone.


Subject(s)
Boron/analysis , Femur/chemistry , Adult , Alpha Particles , Animals , Humans , Monte Carlo Method , Sheep
10.
Appl Radiat Isot ; 137: 62-67, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29587160

ABSTRACT

The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 1012 cm-2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis.


Subject(s)
Autoradiography/methods , Boron/analysis , Neutrons , Animals , Autoradiography/standards , Bone and Bones/chemistry , Boron/standards , Boron Neutron Capture Therapy , Calibration , Computer Simulation , Models, Animal , Radiometry/methods , Radiometry/standards , Sheep , Stochastic Processes , Tissue Distribution
11.
Radiat Environ Biophys ; 57(2): 153-162, 2018 05.
Article in English | MEDLINE | ID: mdl-29476254

ABSTRACT

The analysis of the distribution and density of nuclear tracks forming an autoradiography in a nuclear track detector (NTD) allows the determination of 10B atoms concentration and location in tissue samples from Boron Neutron Capture Therapy (BNCT) protocols. This knowledge is of great importance for BNCT dosimetry and treatment planning. Tissue sections studied with this technique are obtained by cryosectioning frozen tissue specimens. After the slicing procedure, the tissue section is put on the NTD and the sample starts drying. The thickness varies from its original value allowing more particles to reach the detector and, as the mass of the sample decreases, the boron concentration in the sample increases. So in order to determine the concentration present in the hydrated tissue, the application of corrective coefficients is required. Evaporation mechanisms as well as various factors that could affect the process of mass variation are outlined in this work. Mass evolution for tissue samples coming from BDIX rats was registered with a semimicro analytical scale and measurements were analyzed with software developed to that end. Ambient conditions were simultaneously recorded, obtaining reproducible evaporation curves. Mathematical models found in the literature were applied for the first time to this type of samples and the best fit of the experimental data was determined. The correlation coefficients and the variability of the parameters were evaluated, pointing to Page's model as the one that best represented the evaporation curves. These studies will contribute to a more precise assessment of boron concentration in tissue samples by the Neutron Autoradiography technique.


Subject(s)
Autoradiography , Boron/metabolism , Isotopes/metabolism , Neutrons , Animals , Boron/therapeutic use , Boron Neutron Capture Therapy , Isotopes/therapeutic use , Liver/cytology , Liver/metabolism , Lung/cytology , Lung/metabolism , Models, Biological , Rats , Volatilization
12.
Rep Pract Oncol Radiother ; 21(2): 129-34, 2016.
Article in English | MEDLINE | ID: mdl-26933396

ABSTRACT

AIM: In this work we present a methodology to produce an "imprint" of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. BACKGROUND: The distribution and concentration of (10)B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. MATERIALS AND METHODS: A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. RESULTS: A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. CONCLUSIONS: It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake.

13.
Appl Radiat Isot ; 106: 171-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26508276

ABSTRACT

An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100 ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.

14.
Appl Radiat Isot ; 105: 35-39, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26454177

ABSTRACT

An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues.


Subject(s)
Boron Neutron Capture Therapy/standards , Boron/analysis , Argentina , Autoradiography , Humans , Isotopes/analysis , Italy , Laboratories/standards , Liver/chemistry , Neutrons , Radiography , Spectrum Analysis , Tissue Distribution
15.
Microsc Microanal ; 21(4): 796-804, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26155721

ABSTRACT

The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology.


Subject(s)
Autoradiography/methods , Cytological Techniques/methods , Optical Imaging/methods , Polycarboxylate Cement/radiation effects , Radiometry/methods , Ultraviolet Rays , Boranes/metabolism , Cell Line, Tumor , Humans , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism
16.
Int J Radiat Biol ; 91(4): 329-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25510259

ABSTRACT

PURPOSE: We previously reported the therapeutic efficacy of Sequential Boron Neutron Capture Therapy (Seq-BNCT), i.e., BPA (boronophenylalanine) - BNCT followed by GB-10 (decahydrodecaborate) - BNCT 1 or 2 days later, in the hamster cheek pouch oral cancer model. We have utilized the neutron autoradiography methodology to study boron microdistribution in tissue. The aim was to use this method to evaluate if the distribution of GB-10 is altered by prior application of BPA-BNCT in Sequential BNCT protocols. MATERIALS AND METHODS: Extensive qualitative and quantitative autoradiography analyses were performed in the following groups: G1 (animals without boron); G2 (animals injected with BPA); G3 (animals injected with GB-10); G4 (same as G3, 24 h after BPA-BNCT); and G5 (same protocol as G4, 48 h interval). RESULTS: A detailed study of boron localization in the different tissue structures of tumor, premalignant and normal tissue in the hamster cheek pouch was performed. GB-10 accumulated preferentially in non-neoplastic connective tissue, whereas for BPA neoplastic cells showed the highest boron concentration. Boron distribution was less heterogeneous for GB-10 than for BPA. In premalignant and normal tissue, GB-10 and BPA accumulated mostly in connective tissue and epithelium, respectively. CONCLUSIONS: BPA-BNCT could alter boron microlocalization of GB-10 administered subsequently. Boron targeting homogeneity is essential for therapeutic success.


Subject(s)
Autoradiography , Boron Compounds/pharmacokinetics , Boron Neutron Capture Therapy , Mouth Neoplasms/radiotherapy , Animals , Cricetinae , Humans , Mesocricetus , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacokinetics , Tissue Distribution
17.
Int J Radiat Biol ; 91(1): 81-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25004948

ABSTRACT

PURPOSE: In order to optimize the effectiveness of Boron Neutron Capture Therapy (BNCT), Relative Biological Effectiveness (RBE) and Compound Biological Effectiveness (CBE) were determined in two human melanoma cell lines, M8 and Mel-J cells, using the amino acid p-boronophenylalanine (BPA) as boron carrier. MATERIALS AND METHODS: The effects of BNCT on the primary amelanotic cell line M8 and on the metastatic pigmented melanoma cell line Mel-J were studied using colony formation assay. The RBE values were determined using both a gamma ray source, and the neutron beam from the Nuclear Reactor of the National Atomic Energy Commission (RA-3). For the determination of the RBE, cells were irradiated with increasing doses of both sources, between 1 and 8 Gy; and for the determination of CBE factors, the cells were pre-incubated with BPA before irradiation. Afterwards, the cell surviving fraction (SF) was determined for each treatment. RESULTS: Marked differences were observed between both cell lines. Mel-J cells were more radioresistant than the M8 cell line. The clonogenic assays showed that for a SF of 1%, the RBE values were 1.3 for M8 cells and 1.5 for Mel-J cells. Similarly, the CBE values for a 1% SF were 2.1 for M8 and 3 for Mel-J cell lines. For the endpoint of 0.1% of SF the RBE values obtained were 1.2 for M8 and 1.4 for Mel-J cells. Finally, CBE values calculated for a 0.1% were 2 and 2.6 for M8 and Mel-J cell lines respectively. In order to estimate the uptake of the non-radioactive isotope Boron 10 ((10)B), a neutron induced autoradiographic technique was performed showing discrepancies in (10)B uptake between both cell lines. CONCLUSIONS: These obtained in vitro results are the first effectiveness factors determined for human melanoma at the RA-3 nuclear reactor and show that BNCT dosimetry planning for patients could be successfully performed using these new factors.


Subject(s)
Boron Neutron Capture Therapy , Melanoma/pathology , Autoradiography , Biological Transport/radiation effects , Boron Compounds/metabolism , Cell Line, Tumor , Humans , Intracellular Space/metabolism , Intracellular Space/radiation effects , Neoplasm Metastasis , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism , Radiation Tolerance , Relative Biological Effectiveness
18.
Acta Oncol ; 54(1): 99-106, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24960584

ABSTRACT

BACKGROUND: We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. MATERIAL AND METHODS: Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. RESULTS: Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. CONCLUSION: Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.


Subject(s)
Boron Compounds/therapeutic use , Boron Neutron Capture Therapy/methods , Mouth Neoplasms/radiotherapy , Neovascularization, Pathologic/drug therapy , Phenylalanine/analogs & derivatives , 9,10-Dimethyl-1,2-benzanthracene , Angiogenesis Inhibitors/therapeutic use , Animals , Boron Compounds/pharmacokinetics , Carcinogens , Cricetinae , Mesocricetus , Mouth Neoplasms/blood supply , Mouth Neoplasms/chemically induced , Mouth Neoplasms/metabolism , Phenylalanine/pharmacokinetics , Phenylalanine/therapeutic use , Precancerous Conditions/blood supply , Precancerous Conditions/chemically induced , Precancerous Conditions/metabolism , Precancerous Conditions/radiotherapy , Thalidomide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...