Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 191(4): 208, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38499898

ABSTRACT

The identification and correction of negative factors, such as 4-ethylphenol and ethanethiol, is important to comply with food safety regulations and avoid economic losses to wineries. A simple amperometric measurement procedure that facilitates the simultaneous quantification of both compounds in the gas phase has been developed using fullerene and cobalt (II) phthalocyanine-modified dual screen-printed electrodes coated with a room temperature ionic liquid-based gel polymer electrolyte. The replacement of the typical aqueous supporting electrolyte by low-volatility ones improves both operational and storage lifetime. Under the optimum conditions of the experimental variables, Britton Robinson buffer pH 5 and applied potentials of + 0.86 V and + 0.40 V for each working electrode (vs. Ag ref. electrode), reproducibility values of 7.6% (n = 3) for 4-ethylphenol and 6.6% (n = 3) for ethanethiol were obtained, as well as capability of detection values of 23.8 µg/L and decision limits of 1.3 µg/L and 9.2 µg/L (α = ß = 0.05), respectively. These dual electrochemical devices have successfully been applied to the headspace detection of both compounds in white and red wines, showing their potential to be routinely used for rapid analysis control in wineries.

2.
Talanta ; 270: 125543, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38103285

ABSTRACT

4-ethylphenol and 4-ethylguaicol levels in wine are associated to organoleptic defects that cause consumer rejection accompanied by significant economic losses for producers. Thus, electrochemical sensors based on screen-printed carbon electrodes (SPCEs) modified with activated fullerene C60 (AC60) have been developed for the analysis of both phenols by direct headspace amperometric measurements. Upon optimization of the experimental variables affecting the sensors performance, the AC60/SPCE sensors presented linearity ranges from 9.9 to 65.4 µg/L and from 19.6 to 107.1 µg/L for 4-ethylphenol and 4-ethylguaicol, respectively. The achieved detection capacities were 10.3 µg/L (4-ethylphenol) and 19.6 µg/L (4-ethylguaicol), with a reproducibility of 6.3 % and 9.1 % (n = 3), respectively. In addition, dual-working AC60/SPCE devices were developed for the simultaneous analysis of both phenols using different working potentials for each electrode. The dual systems were successfully applied in the analysis of different spiked wine samples, obtaining good recoveries ranging from 94 to 108 %.

3.
Talanta ; 260: 124583, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37105081

ABSTRACT

The formation of thiols has a notable and detrimental sensory impact, especially in the aroma of bottled wines. Their detection in wine is of great interest to avoid important economic and image losses for wineries. This work reports the study of different cobalt phthalocyanine/nanomaterials-based sensors for the headspace detection of volatile thiols. The amperometric procedure based on the use of carbon sensors simply modified with cobalt phthalocyanine showed the best performance. Under the optimum conditions of applied potential, +0.8 V, and pH of the supporting electrolyte, 2.6, this procedure shows a reproducibility of 7% (n = 5) in terms of relative standard deviation of the slopes of calibration curves built in the concentration range from 9.9 to 82.6 µg/L, a capability of detection of 12.5 µg/L and a decision limit of 6.5 µg/L (α = ß = 0.05). The use of this electrocatalytic material and the headspace measurements reduce interferents, increasing the selectivity of the procedure, which allows the easy and successful quantification of ethanethiol in white and red wines.

4.
Mikrochim Acta ; 190(4): 141, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36933096

ABSTRACT

The development of an electrochemical procedure for the determination of 4-ethylguaiacol and its application to wine analysis is described. Modified screen-printed carbon electrodes (SPCEs) with fullerene C60 (C60) have been shown to be efficient in this kind of analysis. The developed activated C60/SPCEs (AC60/SPCEs) were adequate for the determination of 4-ethylguaicol, showing a linear range from 200 to 1000 µg/L, a reproducibility of 7.6% and a capability of detection (CCß) value of 200 µg/L, under optimized conditions. The selectivity of the AC60/SPCE sensors was evaluated in the presence of possibly interfering compounds, and their practical applicability was demonstrated  in the analysis of different wine samples obtaining recoveries ranging from 96 to 106%.

SELECTION OF CITATIONS
SEARCH DETAIL
...