Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
AMB Express ; 8(1): 33, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29508097

ABSTRACT

Engineering of the yeast Saccharomyces cerevisiae towards efficient D-xylose assimilation has been a major focus over the last decades since D-xylose is the second most abundant sugar in nature, and its conversion into products could significantly improve process economy in biomass-based processes. Up to now, two different metabolic routes have been introduced via genetic engineering, consisting of either the isomerization or the oxido-reduction of D-xylose to D-xylulose that is further connected to the pentose phosphate pathway and glycolysis. In the present study, cytosolic D-xylose oxidation was investigated instead, through the introduction of the Weimberg pathway from Caulobacter crescentus in S. cerevisiae. This pathway consists of five reaction steps that connect D-xylose to the TCA cycle intermediate α-ketoglutarate. The corresponding genes could be expressed in S. cerevisiae, but no growth was observed on D-xylose indicating that not all the enzymes were functionally active. The accumulation of the Weimberg intermediate D-xylonate suggested that the dehydration step(s) might be limiting, blocking further conversion into α-ketoglutarate. Although four alternative dehydratases both of bacterial and archaeon origins were evaluated, D-xylonate accumulation still occurred. A better understanding of the mechanisms associated with the activity of dehydratases, both at a bacterial and yeast level, appears essential to obtain a fully functional Weimberg pathway in S. cerevisiae.

2.
AMB Express ; 7(1): 35, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28176283

ABSTRACT

Poly-3-D-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.

3.
Microb Cell Fact ; 15(1): 197, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27863495

ABSTRACT

BACKGROUND: Poly-3-D-hydroxybutyrate (PHB) that is a promising precursor for bioplastic with similar physical properties as polypropylene, is naturally produced by several bacterial species. The bacterial pathway is comprised of the three enzymes ß-ketothiolase, acetoacetyl-CoA reductase (AAR) and PHB synthase, which all together convert acetyl-CoA into PHB. Heterologous expression of the pathway genes from Cupriavidus necator has enabled PHB production in the yeast Saccharomyces cerevisiae from glucose as well as from xylose, after introduction of the fungal xylose utilization pathway from Scheffersomyces stipitis including xylose reductase (XR) and xylitol dehydrogenase (XDH). However PHB titers are still low. RESULTS: In this study the acetoacetyl-CoA reductase gene from C. necator (CnAAR), a NADPH-dependent enzyme, was replaced by the NADH-dependent AAR gene from Allochromatium vinosum (AvAAR) in recombinant xylose-utilizing S. cerevisiae and PHB production was compared. A. vinosum AAR was found to be active in S. cerevisiae and able to use both NADH and NADPH as cofactors. This resulted in improved PHB titers in S. cerevisiae when xylose was used as sole carbon source (5-fold in aerobic conditions and 8.4-fold under oxygen limited conditions) and PHB yields (4-fold in aerobic conditions and up to 5.6-fold under oxygen limited conditions). Moreover, the best strain was able to accumulate up to 14% of PHB per cell dry weight under fully anaerobic conditions. CONCLUSIONS: This study reports a novel approach for boosting PHB accumulation in S. cerevisiae by replacement of the commonly used AAR from C. necator with the NADH-dependent alternative from A. vinosum. Additionally, to the best of our knowledge, it is the first demonstration of anaerobic PHB synthesis from xylose.


Subject(s)
Alcohol Oxidoreductases/metabolism , Hydroxybutyrates/metabolism , NADP/metabolism , Polyesters/metabolism , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Saccharomyces cerevisiae/genetics
4.
AMB Express ; 5: 14, 2015.
Article in English | MEDLINE | ID: mdl-25852991

ABSTRACT

Poly-3-d-hydroxybutyrate (PHB) is a promising biopolymer naturally produced by several bacterial species. In the present study, the robust baker's yeast Saccharomyces cerevisiae was engineered to produce PHB from xylose, the main pentose found in lignocellulosic biomass. The PHB pathway genes from the well-characterized PHB producer Cupriavidus necator were introduced in recombinant S. cerevisiae strains already capable of pentose utilization by introduction of the fungal genes for xylose utilization from the yeast Scheffersomyces stipitis. PHB production from xylose was successfully demonstrated in shake-flasks experiments, with PHB yield of 1.17 ± 0.18 mg PHB g(-1) xylose. Under well-controlled fully aerobic conditions, a titer of 101.7 mg PHB L(-1) was reached within 48 hours, with a PHB yield of 1.99 ± 0.15 mg PHB g(-1) xylose, thereby demonstrating the potential of this host for PHB production from lignocellulose.

5.
Appl Microbiol Biotechnol ; 98(17): 7299-318, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24970456

ABSTRACT

Carboxylic acids are important bulk chemicals that can be used as building blocks for the production of polymers, as acidulants, preservatives and flavour compound or as precursors for the synthesis of pharmaceuticals. Today, their production mainly takes place through catalytic processing of petroleum-based precursors. An appealing alternative would be to produce these compounds from renewable resources, using tailor-made microorganisms. Saccharomyces cerevisiae has already demonstrated its value for bioethanol production from renewable resources. In this review, we discuss Saccharomyces cerevisiae engineering potential, current strategies for carboxylic acid production as well as the specific challenges linked to the use of lignocellulosic biomass as carbon source.


Subject(s)
Carboxylic Acids/metabolism , Lignin/metabolism , Saccharomyces cerevisiae/metabolism , Biotransformation , Metabolic Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...