Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(4): e202303154, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37905588

ABSTRACT

4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.

2.
ACS Nano ; 16(8): 11833-11841, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35867644

ABSTRACT

Nanoparticles serving as a multifunctional and multiaddressable dopant to modify the properties of liquid crystalline matrices are developed by combining cobalt ferrite nanocrystals with organic ligands featuring a robust photosensitive unit and a source of chirality from the natural pool. These nanoparticles provide a stable nanocomposite when dispersed in achiral liquid crystals, giving rise to chiral supramolecular structures that can respond to UV-light illumination, and, at the same time, the formed nanocomposite possesses strong magnetic response. We report on a nanocomposite that shows three additional functionalities (chirality and responsiveness to UV light and magnetic field) upon the introduction of a single dopant into achiral liquid crystals.

3.
Angew Chem Int Ed Engl ; 61(34): e202205855, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35570750

ABSTRACT

In this work, we developed a water-soluble caging group based on a π-extended BODIPY scaffold able to release carboxylate-containing cargo upon red light illumination (λirr =633 nm). We performed mechanistic studies showing new insights into the principles of the photoreactivity of these cages and demonstrated a significant influence of the structure of a carboxylate cargo on the rate and efficiency of the uncaging process and its side reactions. We used it for selective delivery, visualisation, and photorelease of a signaling lipid in cell plasma and internal membranes. With this approach, we successfully induced Ca2+ release in cells expressing the GPR40 receptor.


Subject(s)
Boron Compounds , Water , Boron Compounds/chemistry , Light , Lipids
4.
Beilstein J Org Chem ; 15: 1032-1045, 2019.
Article in English | MEDLINE | ID: mdl-31164941

ABSTRACT

The unexpectedly uncatalyzed reaction between 2-amino-4-arylimidazoles, aromatic aldehydes and Meldrum's acid has selectively led to the corresponding Knoevenagel-Michael adducts containing a free amino group in the imidazole fragment. The adducts derived from Meldrum's acid have been smoothly converted into 1,7-diaryl-3-amino-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-5-ones and 3-(2-amino-4-aryl-1H-imidazol-5-yl)-3-arylpropanoic acids. The interaction of 2-amino-4-arylimidazoles with aromatic aldehydes or isatins and acyclic methylene active compounds has led to the formation of pyrrolo[1,2-c]imidazole-6-carbonitriles, pyrrolo[1,2-с]imidazole-6-carboxylates and spiro[indoline-3,7'-pyrrolo[1,2-c]imidazoles], which can be considered as the analogues of both 3,3'-spirooxindole and 2-aminoimidazole marine sponge alkaloids.

5.
Molecules ; 24(6)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897743

ABSTRACT

Liquid crystals (LCs) are among the most prominent materials of the current information age, mainly due to their well-known application in liquid crystal displays (LCDs). Their unique electro-optical properties stem from their ability to form organised structures (mesophases) on the transition from solid state to isotropic liquid. Molecules of LCs in a mesophase still maintain the anisotropy of solid crystals, while simultaneously exhibiting the fluidity of liquids, which gives the system the ability to react immediately to external stimuli such as electric or magnetic fields, light, mechanical stress, pressure and, of course, temperature. For the proper function of LC-based devices, not only chemical, but also optical purity of materials is strongly desirable, since any impurity could be detrimental to the self-assembly of the molecules. Therefore, in this study we aimed to verify synthetic methods published in the literature, which are used nowadays to prepare chiral building blocks based on lactic acid, for their enantioselectivity. Moreover, we have focused on the development of an analytical chiral separation method for target liquid crystalline materials. Using a chiral polysaccharide-based column operated in liquid chromatography mode, we show that not all published methods of LC synthesis are enantioselective, which could lead to significant differences in the properties of the resulting materials. We show that high-performance liquid chromatography with UV detection and supercritical fluid chromatography with UV and mass spectrometry detection enable full control over the chemical and optical purity of the target LCs and the corresponding chiral building blocks. For the first time, we utilise supercritical fluid chromatography with mass detection for the direct chiral analysis of liquid crystalline materials and impurities formed during the synthesis.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Lactic Acid/chemistry , Liquid Crystals , Mass Spectrometry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...