Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Adv Res ; 53: 99-114, 2023 11.
Article in English | MEDLINE | ID: mdl-36564001

ABSTRACT

INTRODUCTION: Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES: The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS: First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS: We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION: Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.


Subject(s)
Signal Transduction , Sirtuin 1 , Bees , Animals , Polymerase Chain Reaction , Disease Susceptibility , Pollination
2.
Insects ; 13(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35621792

ABSTRACT

A new device for assessing Varroa destructor (Anderson−Truman) mite infestations in honey bee colonies was designed, tested, and evaluated against the sugar roll method, a widely used method by beekeepers. The Varroa Shaker Device (VSD) is constructed of polyvinyl chloride (PVC) pipe that separates into three parts. Inside the shaker there are two mesh sizes; the larger mesh separates the bees from the mites, and the smaller mesh captures the mites. The VSD can be used by shaking bees with only water as the wash solution. The recovery of mites using the VSD is >90%, which is such as that recorded for using the sugar roll method. Our tests demonstrated that the VSD accurately assessed mite loads when fewer than 250 bees were sampled and shaken with 250 mL of water for one minute. To assure accurate mite counts are achieved with any sampling device, honey bees should be taken from frames with an open and/or capped brood where the mites are more likely located. The VSD can be used in both laboratory and field settings to accurately assess honey bee colonies for levels of mite infestation or for collecting live mites for research purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...