Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Foods ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731771

ABSTRACT

The consumption of fisheries and aquaculture products has been increasing in recent decades, and it is necessary to strike a balance between production and sustainability in aquaculture; this is essential homework to support the demand for human food. This study aimed to investigate the sensory and nutritional characteristics of a sausage made from the fillet of the native fish Old Blue (Andinoacara rivulatus) to stimulate the local economy. A multifactorial A*B*C design was used, with Factor A being rearing systems (wild and farmed), Factor B being types of protein (quinoa meal and soybean meal), and Factor C being lipids of animal (pork fat) and vegetable (sunflower oil) origin. Highly significant differences were observed in all formulas, according to Tukey (p < 0.05). The highest protein percentage was with soybean flour at 11.24%, while quinoa flour had 10.80% of the product. In sensory characteristics, the best attributes were for texture in the mouth with a hedonic scale from 0 to 5, with 4.2 firmness being mostly acceptable, odor at 4.5, the aromatic attribute with the highest and best value, and color was the clearest at 4.3 acceptability. The flavor was 4.3, mostly more pleasant according to the tasters. The yield of farmed fillets was 23.16% compared to wild 13.89%, and the balance of sausage yield was 393 g with a yield of 76.33% of the total weight. Microbiological analysis of the sausage with the native species showed the absence of pathogenic microorganisms. A commercial shelf life of 30 days was also established for the sausage, demonstrating an added value through this processing, allowing its exploitation in areas further away from the fishing sites and, thus, a greater possibility of social development in the area.

2.
Foods ; 12(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959118

ABSTRACT

A survey was performed to gather information on the processing steps, conditions, and practices employed by industries processing ready-to-eat (RTE) leafy vegetables in Argentina. A total of seven industries participated in the survey. A cluster analysis of the data obtained was performed to identify homogeneous groups among the participating industries. The data collected were used as inputs of two predictive microbiology models to estimate Salmonella concentrations after chlorine washing, during storage and distribution of final products, and to rank the different practices according to the final estimated Salmonella levels. Six different clusters were identified by evaluating the parameters, methods, and controls applied in each processing step, evidencing a great variability among industries. The disinfectant agent applied by all participating industries was sodium hypochlorite, though concentrations and application times differed among industries from 50 to 200 ppm for 30 to 110 s. Simulations using predictive models indicated that the reductions in Salmonella in RTE leafy vegetables would vary in the range of 1.70-2.95 log CFU/g during chlorine-washing depending on chlorine concentrations applied, washing times, and vegetable cutting size, which varied from 9 to 16 cm2 among industries. Moreover, Salmonella would be able to grow in RTE leafy vegetables during storage and distribution, achieving levels of up to 2 log CFU/g, considering the storage and transportation temperatures and times reported by the industries, which vary from 4 to 14 °C and from 18 to 30 h. These results could be used to prioritize risk-based sampling programs by Food Official Control or determine more adequate process parameters to mitigate Salmonella in RTE leafy vegetables. Additionally, the information gathered in this study is useful for microbiological risk assessments.

3.
Food Res Int ; 167: 112451, 2023 May.
Article in English | MEDLINE | ID: mdl-37087200

ABSTRACT

Fresh-cut produces are often consumed uncooked, thus proper sanitation is essential for preventing cross contamination. The reduction and subsequent growth of Salmonella enterica sv Thompson were studied in pre-cut iceberg lettuce washed with simulated wash water (SWW), sodium hypochlorite (SH, free chlorine 25 mg/L), and peroxyacetic acid (PAA, 80 mg/L) and stored for 9 days under modified atmosphere at 9, 13, and 18 °C. Differences in reduction between SH and PAA were non-existent. Overall, visual quality, dehydration, leaf edge and superficial browning and aroma during storage at 9 °C were similar among treatments, but negative effects increased with temperature. These results demonstrated that PAA can be used as an effective alternative to chlorine for the disinfection of Salmonella spp. in fresh-cut lettuce. The growth of Salmonella enterica sv Thompson was successfully described with the Baranyi and Roberts growth model in the studied storage temperature range, and after treatment with SWW, chlorine, and PAA. Subsequently, predictive secondary models were used to describe the relationship between growth rates and temperature based on the models' family described by Belehrádek. Interestingly, the exposure to disinfectants biased growth kinetics of Salmonella during storage. Below 12 °C, growth rates in lettuce treated with disinfectant (0.010-0.011 log CFU/h at 9 °C) were lower than those in lettuce washed with water (0.016 log CFU/h at 9 °C); whereas at higher temperatures, the effect was the opposite. Thus, in this case, the growth rate values registered at 18 °C for lettuce treated with disinfectant were 0.048-0.054 log CFU/h compared to a value of 0.038 log CFU/h for lettuce treated with only water. The data and models developed in this study will be crucial to describing the wash-related dynamics of Salmonella in a risk assessment framework applied to fresh-cut produce, providing more complete and accurate risk estimates.


Subject(s)
Disinfectants , Peracetic Acid , Peracetic Acid/pharmacology , Lactuca , Chlorine/pharmacology , Food Microbiology , Colony Count, Microbial , Food Handling/methods , Salmonella , Disinfectants/pharmacology , Water
4.
Foods ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34441500

ABSTRACT

"Turrialba cheese" is a Costa Rican fresh cheese highly appreciated due to its sensory characteristics and artisanal production. As a ready-to-eat dairy product, its formulation could support Listeria monocytogenes growth. L. monocytogenes was isolated from 14.06% of the samples and the pathogen was able to grow under all tested conditions. Due to the increasing demand for low-salt products, the objective of this study was to determine the effect of salt concentration on the growth of pathogen isolates obtained from local cheese. Products from retail outlets in Costa Rica were analyzed for L. monocytogenes. These isolates were used to determine growth at 4 °C for different salt concentration (0.5-5.2%). Kinetic curves were built and primary and secondary models developed. Finally, a validation study was performed using literature data. The R2 and Standard Error of fit of primary models were ranked from 0.964-0.993, and 0.197-0.443, respectively. An inverse relationship was observed between growth rate and salt concentration. A secondary model was obtained, with R2 = 0.962. The model was validated, and all values were Bf > 1, thus providing fail-safe estimations. These data were added to the free and easy-to-use predictive microbiology software "microHibro" which is used by food producers and regulators to assist in decision-making.

5.
Front Microbiol ; 12: 650754, 2021.
Article in English | MEDLINE | ID: mdl-34149640

ABSTRACT

The presence of Vibrio species in table olive fermentations has been confirmed by molecular biology techniques in recent studies. However, there has been no report of any foodborne outbreak caused by Vibrio due to the consumption of table olives, and their role as well as the environmental conditions allowing their survival in table olives has not been elucidated so far. The aims of this work were to model the behavior of an inoculated Vibrio cocktail in diverse table olive environments and study the possible behavior of an inoculated Vibrio cocktail in table olives. First, an in vitro study has been performed where the microbial behavior of a Vibrio cocktail was evaluated in a laboratory medium and in olive brines using predictive models at different NaCl concentrations (2-12%) and pH levels (4.0-9.0). Afterward, a challenge testing was done in lye-treated olives inoculated at the beginning of fermentation with the Vibrio cocktail for 22 days. The Vibrio cocktail inoculated in table olives has not been detected in olive brines during fermentation at different pH levels. However, it was observed that this microorganism in a laboratory medium could reach an optimal growth at pH 9 and 2% salt, without time of constant absorbance (t A), and the maximum absorbance value (y end) observed was at pH 8 and 2% salt conditions. The statistical analysis demonstrated that the effect of salt concentration was higher than pH for the kinetic growth parameters (µmax, t A, and y end). On the other hand, it was confirmed that no growth of the Vibrio cocktail on any sample was noticed in lye-treated olive fermentations. Thus, it was concluded that the presence of olive compounds (unknown) did not allow the development of Vibrio strains, so it is a very safety product as it has a natural antimicrobial compound, but the possibility that a native Vibrio sp. is able to acquire the capacity to adapt to this compound should be considered in further studies.

6.
Food Microbiol ; 99: 103830, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119115

ABSTRACT

The occurrence of various foodborne disease outbreaks linked to the consumption of cucumbers worldwide in the last years raised concerns regarding the survival ability of foodborne pathogens on this food matrix. This work aimed at evaluating and quantifying the survival of Escherichia coli O157:H7 and Salmonella spp. on cucumber surfaces. Cucumbers were inoculated with a 5-strain cocktail of each microorganism and kept at 25 °C. The survival ability of two green fluorescent protein (GFP) labelled Salmonella strains inoculated individually on cucumbers was also evaluated. The inoculated areas were swabbed at different time intervals (maximum of 72 h) and cells were enumerated by plate count method (log CFU/cm2). The population of both pathogens decreased significantly on cucumber surfaces over time. E. coli O157:H7 could only be recovered up to 8 h while Salmonella spp. could be detected up to 24 h. The GFP-labelled Salmonella strains showed similar behaviour on cucumbers compared to the evaluated Salmonella cocktail. Survival kinetic parameters were estimated by fitting the Weibull model to the survival data. The data obtained in this study indicate that despite of the rapid decrease on concentrations of both pathogens evaluated on cucumbers surfaces, strategies to avoid their contamination during the supply chain as well as proper cleaning and disinfection protocols must be put forward to mitigate both E. coli O57:H7 and Salmonella on cucumbers and therefore, to decrease the exposure of consumers to microbial hazards and to avoid cross-contamination events during distribution, retail and in domestic environments.


Subject(s)
Cucumis sativus/microbiology , Escherichia coli O157/growth & development , Salmonella/growth & development , Colony Count, Microbial , Food Microbiology , Fruit/microbiology , Microbial Viability
7.
Food Microbiol ; 94: 103649, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279074

ABSTRACT

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Subject(s)
Fish Products/microbiology , Food Preservation/methods , Latilactobacillus sakei/physiology , Listeria monocytogenes/growth & development , Animals , Antibiosis , Food Packaging , Listeria monocytogenes/physiology , Sea Bream/microbiology
8.
Foods ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708923

ABSTRACT

The aim of this study was to model the growth and survival behaviour of Salmonella Reading and endogenous lactic acid bacteria on fresh pre-cut iceberg lettuce stored under modified atmosphere packaging for 10 days at different temperatures (4, 8 and 15 °C). The Baranyi and Weibull models were satisfactorily fitted to describe microbial growth and survival behaviour, respectively. Results indicated that lactic acid bacteria (LAB) could grow at all storage temperatures, while S. Reading grew only at 15 °C. Specific growth rate values (µmax) for LAB ranged between 0.080 and 0.168 h-1 corresponding to the temperatures 4 and 15 °C while for S. Reading at 15 °C, µmax = 0.056 h-1. This result was compared with published predictive microbiology models for other Salmonella serovars in leafy greens, revealing that predictions from specific models could be valid for such a temperature, provided they were developed specifically in lettuce regardless of the type of serovars inoculated. The parameter delta obtained from the Weibull model for the pathogen was found to be 16.03 and 18.81 for 4 and 8 °C, respectively, indicating that the pathogen underwent larger reduction levels at lower temperatures (2.8 log10 decrease at 4 °C). These data suggest that this Salmonella serovar is especially sensitive to low temperatures, under the assayed conditions, while showcasing that a correct refrigeration could be an effective measure to control microbial risk in commercial packaged lettuce. Finally, the microbiological data and models from this study will be useful to consider more specifically the behaviour of S. Reading during transport and storage of fresh-cut lettuce, elucidating the contribution of this serovar to the risk by Salmonella in leafy green products.

9.
Food Microbiol ; 90: 103498, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32336378

ABSTRACT

This study was aimed at characterizing microbiologically Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) produced in two estuarine ecosystems in Andalusia (Spain): the estuary of the river Guadalquivir (La Puebla del Río, Sevilla) (A), and the estuary of the river Guadiana (Ayamonte, Huelva) (B). The collected fish individuals and water were analysed for hygiene indicator microorganisms and pathogens. The statistical analysis of results revealed that microbial counts for the different microbiological parameters were not statistically different for fish type. On the contrary, considering anatomic part, viscera showed significantly higher concentrations for Enterobacteriaceae, total coliforms and for Staphylococcus spp. coagulase +. Furthermore, location A showed in water and fish higher levels for lactic acid bacteria, aerobic mesophilic bacteria, Enterobacteriaceae, total coliforms and Staphylococcus spp. coagulase +. Neither Listeria monocytogenes, nor Salmonella spp. were detected, though Vibrio parahaemolyticus was identified, molecularly, in estuarine water in location B. The predictive analysis demonstrated that the initial microbiological quality could have an impact on product shelf-life, being longer for location B, with better microbiological quality. Results stress the relevance of preventing the microbiological contamination of water in estuary production systems in order to assure the quality and safety of Gilthead sea bream and Sea bass.


Subject(s)
Aquaculture , Bacteria/isolation & purification , Bass/microbiology , Fish Diseases/microbiology , Sea Bream/microbiology , Animals , Bacteria/classification , Bacteria/pathogenicity , Ecosystem , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/pathogenicity , Estuaries , Fish Diseases/epidemiology , Food Storage , Prevalence , Seafood/microbiology , Spain/epidemiology , Staphylococcus/isolation & purification , Staphylococcus/pathogenicity , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/pathogenicity
10.
Foods ; 9(2)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991695

ABSTRACT

The Clostridium sp. is a large group of spore-forming, facultative or strictly anaerobic, Gram-positive bacteria that can produce food poisoning. The table olive industry is demanding alternative formulations to respond to market demand for the reduction of acidity and salt contents in final products. while maintaining the appearance of freshness of fruits. In this work, logistic regression models for non-adapted and acid-adapted Clostridium sp. strains were developed in laboratory medium to study the influence of pH, NaCl (%) and time on the probability of germination of their spores. A Clostridium sporogenes cocktail was not able to germinate at pH < 5.0, although the adaptation of the strains produced an increase in the probability of germination at 5.0-5.5 pH levels and 6% NaCl concentration. At acidic pH values (5.0), the adapted strains germinated after 10 days of incubation, while those which were non-adapted required 15 days. At pH 5.75 and with 4% NaCl, germination of the adapted strains took place before 7 days, while several replicates of the non-adapted strains did not germinate after 42 days of storage. The model was validated in natural green olive brines with good results (>81.7% correct prediction cases). The information will be useful for the industry and administration to assess the safety risk in the formulation of new processing conditions in table olives and other fermented vegetables.

11.
Food Microbiol ; 86: 103346, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703876

ABSTRACT

This work aimed to study the effect of the combination of Sodium hypochlorite, the most used disinfectant by the vegetable industry, with a natural antimicrobial, benzyl-isothiocyanate (BITC), considering cutting surface and contact time, on the reduction of Salmonella in fresh-cut produce in washing operations under typical industrial conditions. Overall, the combinations of disinfectant and process parameters resulted in a mean reduction of Salmonella of 2.5 log CFU/g. According to statistical analysis, free chlorine and BITC concentrations, contact time and cut size exerted a significant effect on the Salmonella reduction (p ≤ 0.05). The optimum combination of process parameter values yielding the highest Salmonella reduction was a lettuce cut size of 15 cm2 washed for 110 s in industrial water containing 160 mg/L free chlorine and 40 mg/L BITC. A predictive model was also derived, which, as illustrated, could be applied to optimize industrial disinfection and develop probabilistic Exposure Assessments considering the effect of washing process parameters on the levels of Salmonella contamination in leafy green products. The present study demonstrated the efficacy of chlorine to reduce Salmonella populations in fresh-cut lettuce while highlighting the importance of controlling the washing process parameters, such as, contact time, cut size and concentration of the disinfectant to increase disinfectant efficacy and improve food safety.


Subject(s)
Chlorine/pharmacology , Disinfection/methods , Food Handling/methods , Isothiocyanates/pharmacology , Lactuca/microbiology , Salmonella/drug effects , Disinfectants/pharmacology , Food Contamination/analysis , Food Microbiology , Food Safety , Lactuca/growth & development , Salmonella/growth & development , Sodium Hypochlorite/pharmacology , Time Factors , Vegetables/growth & development , Vegetables/microbiology
12.
Int J Food Microbiol ; 290: 226-236, 2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30368088

ABSTRACT

A tool able to quantitatively assess the fate of potential pathogenic microorganisms in foods along the food chain and their impact on public health is highly valuable for food safety decision-makers. The aim of this work was to present an overview of the Predictive Microbiology software MicroHibro, which is able to assess the evolution of potential pathogens and spoilage microorganisms along the food chain, providing estimates for the exposure level and risk associated with a food product. The application is built on an extensive Predictive Microbiology Model Data Base (PMDB) including kinetic processes like growth, inactivation, transfer as well as dose-response models. PMDB can be populated with new models by using an on-line tool in combination with a standardized method for describing Predictive Microbiology models. This enables MicroHibro to be easily updated, increasing its applicability and use. Estimation of microbial risk associated with a food product can be achieved, in MicroHibro, by describing steps in any food chain using four different microbial processes (growth, inactivation, transfer and partitioning). As a result, an estimate of the concentration and prevalence of microorganisms in the food of interest as well as attendant risk are provided. Also, MicroHibro allows comparing different predictive models and validate them by introducing user's data. In this paper, examples are provided to illustrate how predictive models can be incorporated in MicroHibro, and then, used to develop a Quantitative Microbial Risk Assessment model. The use of expert computational systems is a powerful tool for supporting food safety and quality activities by Health Authorities and the food industry. They represent a breakthrough in the assessment and management of food safety based on scientific evidence.


Subject(s)
Food Contamination/analysis , Food Microbiology , Software , Computer Simulation , Food Safety , Risk Assessment
13.
Int J Food Microbiol ; 270: 14-21, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29438857

ABSTRACT

Over the last couple of decades, several studies have evaluated growth dynamics of L. monocytogenes in lightly processed and ready-to-eat (RTE) fishery products mostly consumed in Nordic European countries. Other fish species from aquaculture production are of special interest since their relevant consumption patterns and added value in Mediterranean countries, such as sea bream and sea bass. In the present study, the growth of L. monocytogenes was evaluated in fish-based juice (FBJ) by means of optical density (OD) measurements in a temperature range 2-20 °C under different atmosphere conditions (i.e. reduced oxygen and aerobic). The Baranyi and Roberts model was used to estimate the maximum growth rate (µmax) from the observed growth curves. The effect of storage temperature on µmax was modelled using the Ratkowsky square root model. The developed models were validated using experimental growth data for L. monocytogenes in sea bream and sea bass fillets stored under static and dynamic temperature conditions. Overall, models developed in FBJ provided fail-safe predictions for L. monocytogenes growth. For the model generated under reduced oxygen conditions, bias and accuracy factor for growth rate predictions were 1.15 and 1.25, respectively, showing good performance to adequately predict L. monocytogenes growth in Mediterranean fish products. The present study provides validated predictive models for L. monocytogenes growth in Mediterranean fish species to be used in microbial risk assessment and shelf-life studies.


Subject(s)
Bass/microbiology , Fish Products/microbiology , Food Microbiology/methods , Food Safety/methods , Listeria monocytogenes/growth & development , Models, Biological , Sea Bream/microbiology , Animals , Aquaculture , Colony Count, Microbial , Temperature
14.
Front Microbiol ; 8: 2326, 2017.
Article in English | MEDLINE | ID: mdl-29238326

ABSTRACT

Table olives are one of the most representatives and consumed fermented vegetables in Mediterranean countries. However, there is an evident lack of standardization of production processes and HACCP systems thus implying the need of establishing decision-making tools allowing their commercialization and shelf-life extension. The present work aims at developing a decision-making scoring system by means of a probabilistic assessment to standardize production process of Aloreña de Málaga table olives based on the identification of potential hazards or deficiencies in hygienic processes for the subsequent implementation of corrective measures. A total of 658 microbiological and physico-chemical data were collected over three consecutive olive campaigns (2014-2016) to measure the variability and relative importance of each elaboration step on total hygienic quality and product safety. Three representative companies were visited to collect samples from food-contact surfaces, olive fruits, brines, air environment, olive dressings, water tanks, and finished/packaged products. A probabilistic assessment was done based on the establishment of Performance Hygiene and Safety Scores (PHSS 0-100%) through a standardized system for evaluating product acceptability. The mean value of the global PHSS for the Aloreña de Málaga table olives processing (PHHSFTOT) was 64.82% (90th CI: 52.78-76.39%) indicating the high variability among facilities in the evaluated processing steps on final product quality and safety. Washing and cracking, and selection and addition of olive dressings were detected as the most deficient ones in relation to PHSSFi values (p < 0.05) (mean = 53.02 and 56.62%, respectively). The relative contribution of each processing step was quantified by different experts (n = 25) from the Aloreña de Málaga table olive sector through a weighted PHSS (PHSSw). The mean value of PHSSw was 65.53% (90th CI: 53.12-77.52%). The final processing steps obtained higher values for PHSSw being the finished product the most relevant one (mean = 18.44%; 90% CI: 10.34-25.33%). Sensitivity analysis concluded that intervention measures focused on reducing the contamination of washing brines could lead to an improvement of PHSSFTOT value to 67.03%. The present work can be potentially applied in the Aloreña de Málaga table olive food sector for improving food quality and safety assurance.

15.
Int J Food Microbiol ; 240: 40-46, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27590560

ABSTRACT

Consumers' demand for ready-to-eat (RTE) turkey meat is attributed to its convenience and healthy properties. However, as cooked meat product it is subjected to post-process contamination, thus allowing presence and growth of microbial pathogens, such as Salmonella spp.. The aim of this study was to include a natural antimicrobial, thyme essential oil (TEO), on RTE turkey products in order to evaluate its effectiveness throughout the shelf life. To do so, the effect of four different formulations of cooked RTE turkey products on Salmonella Enteritidis behaviour was investigated. Products' slices were surface inoculated with S. Enteritidis (ca. 4 to 5logcfu/g), subsequently stored at 10 and 25°C and microbiologically analysed during 18 and 12days, respectively. Predictive microbiology models fitted to count data were used to evaluate microbial behaviour. Results showed that S. Enteritidis behaviour on RTE turkey products slices during storage was strongly dependent on temperature. The pathogen was able to grow on slices at all tested conditions during storage at 25°C and no statistical differences were detected (p>0.05) between growth parameters. At 10°C, different behaviour patterns were observed. The application of TEO led to higher Salmonella inactivation rates on a product exempt of chemical preservatives. The addition of this novel antimicrobial on meat products or its incorporation on meat active packaging systems as a part of hurdle technology could increase RTE turkey products safety while satisfying the demand of more natural foods.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Contamination/prevention & control , Food Preservatives/pharmacology , Food Storage/methods , Listeria monocytogenes/growth & development , Meat Products/microbiology , Oils, Volatile/pharmacology , Salmonella enteritidis/growth & development , Thymus Plant/metabolism , Animals , Cold Temperature , Colony Count, Microbial , Consumer Product Safety , Cooking , Food Contamination/analysis , Food Microbiology , Listeria monocytogenes/drug effects , Meat/microbiology , Salmonella enteritidis/drug effects , Turkeys
16.
J Food Sci ; 81(11): M2770-M2775, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27681304

ABSTRACT

The increased demand for low-sodium ready-to-eat (RTE) meat products highlights the need for new strategies to ensure food safety. The application of essential oils (EOs) as natural antimicrobials in the meat industry has been suggested to prevent or control cross-contamination during meat processing operations. This work aims to quantify and model the transfer of Salmonella Enteritidis during the slicing procedure of RTE turkey products treated with thyme essential oil (TEO) at a concentration of 0.1% (v/w). Two products were subjected to the slicing procedure with slicer blades inoculated with S. Enteritidis at 108 cfu/mL. The Weibull and modified Weibull predictive models were fitted to the transfer data. Twenty slices were sampled and showed positive with bacteria, indicating cross-contamination. The number of cells transferred per slice decreased logarithmically during the assays. The transfer models, based on the Weibull model, were suitable to describe the bacterial transfer trend on slices in most cases. TEO treatment reduced the transfer of Salmonella on a preservative free RTE turkey product. The predictive models obtained in this study can help food-quality staff and managers on the design and assessment of processes to guard RTE turkey products against Salmonella. This work supports the addition of EOs to reduce microbial risk in RTE meat products.

17.
Int J Food Microbiol ; 177: 1-8, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24583345

ABSTRACT

The purpose of this study was to evaluate and model the growth of Escherichia coli O157:H7 in fresh-cut lettuce submitted to a neutral electrolyzed water (NEW) treatment, packaged in passive modified atmosphere and subsequently stored at different temperatures (4, 8, 13, 16°C) for a maximum of 27 days. Results indicated that E. coli O157:H7 was able to grow at 8, 13, and 16°C, and declined at 4°C. However at 8°C, the lag time lasted 19 days, above the typical shelf-life time for this type of products. A secondary model predicting growth rate as a function of temperature was developed based on a square-root function. A comparison with literature data indicated that the growth predicted by the model for E. coli O157:H7 was again lower than those observed with other disinfection treatments or packaging conditions (chlorinated water, untreated product, NEW, etc.). The specific models here developed might be applied to predict growth in products treated with NEW and to improve existing quantitative risk assessments.


Subject(s)
Food Microbiology , Food Packaging , Lactuca/microbiology , Models, Biological , Risk Assessment/methods , Water/chemistry , Atmosphere , Escherichia coli O157/growth & development , Food Storage , Temperature , Time
18.
Food Sci Technol Int ; 20(1): 3-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23733816

ABSTRACT

The objective of this work was to study the effect of post-packaging pasteurization on the sensory quality and growth of natural microorganisms during refrigerated storage (6 °C) of a cooked meat product considering two packaging atmospheres based on mixture of typical gases (CO(2)/N(2) (22/78%) and novel gases (CO(2)/Ar (17/83%)). Growth of lactic acid bacteria was significantly different between samples with and without post-packaging pasteurization, showing a growth rate >0.44 and equal to 0.28 log cfu/day, respectively. For samples with post-packaging pasteurization, atmosphere CO(2)/Ar resulted in a lower growth of lactic acid bacteria and a better sensory quality. Overall, samples without post-packaging pasteurization did not show a significant reduction of sensory quality during storage time (121 days) while samples with post-packaging pasteurization showed deterioration in their sensory quality. Further investigation is needed to obtain more definitive conclusions about the effect of post-packaging pasteurization and argon-based packaging atmospheres on cooked meat products.


Subject(s)
Argon , Food Microbiology/methods , Food Packaging/methods , Food Quality , Meat Products/microbiology , Pasteurization/methods , Animals , Carbon Dioxide , Colony Count, Microbial/methods , Colony Count, Microbial/statistics & numerical data , Cooking , Escherichia coli , Food Microbiology/statistics & numerical data , Food Preservation/methods , Food Safety/methods , Food Storage/methods , Listeria/isolation & purification , Nitrogen , Salmonella/isolation & purification , Swine
19.
Food Microbiol ; 33(2): 131-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23200644

ABSTRACT

Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6-8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06-0.31), 0.55 (95% CI: 0.17-1.20) and 1.43 (95% CI: 0.82-2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R(2) > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products.


Subject(s)
Chlorine/pharmacology , Escherichia coli O157/growth & development , Food Preservation/methods , Lactuca/microbiology , Disinfectants/pharmacology , Escherichia coli O157/chemistry , Escherichia coli O157/drug effects , Food Contamination/economics , Food Contamination/prevention & control , Kinetics , Lactuca/economics , Models, Biological , Product Packaging/economics
20.
Food Microbiol ; 30(1): 146-56, 2012 May.
Article in English | MEDLINE | ID: mdl-22265295

ABSTRACT

The efficacy of an electrochemical treatment in water disinfection, using boron-doped diamond electrodes, was studied and its suitability for the fresh-cut produce industry analyzed. Tap water (TW), and tap water supplemented with NaCl (NaClW) containing different levels of organic matter (Chemical Oxygen Demand (COD) around 60, 300, 550 ± 50 and 750 ± 50 mg/L) obtained from lettuce, were inoculated with a cocktail of Escherichia coli O157:H7 at 105 cfu/mL. Changes in levels of E. coli O157:H7, free, combined and total chlorine, pH, oxidation-reduction potential, COD and temperature were monitored during the treatments. In NaClW, free chlorine was produced more rapidly than in TW and, as a consequence, reductions of 5 log units of E. coli O157:H7 were achieved faster (0.17, 4, 15 and 24 min for water with 60, 300, 500 and 750 mg/L of COD, respectively) than in TW alone (0.9, 25, 60 min and 90 min for water with 60, 300, 600 and 800 mg/L of COD, respectively). Nonetheless, the equipment showed potential for water disinfection and organic matter reduction even without adding NaCl. Additionally, different mathematical models were assessed to account for microbial inactivation curves obtained from the electrochemical treatments.


Subject(s)
Disinfection/methods , Escherichia coli O157/growth & development , Food Contamination/analysis , Food Handling/methods , Food Microbiology/methods , Chlorine , Colony Count, Microbial , Consumer Product Safety , Electrochemical Techniques , Hydrogen-Ion Concentration , Lactuca/microbiology , Nonlinear Dynamics , Water Microbiology/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...