Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38819532

ABSTRACT

This experiment evaluated the effects of multiple bovine-appeasing substance (BAS) administration during a 42-d preconditioning program followed by a feedlot receiving period on productivity, health, and physiological variables of feeder cattle. Ninety calves were weaned, weighed, loaded into a livestock trailer, transported for 70 km, and unloaded at the Bozeman Agricultural Research and Teaching Farm for a 42-d preconditioning program. Upon arrival, calf body weight (BW) was recorded again, and both pre- and post-transport BWs were averaged and used as calf weaning initial BW. Calves were ranked by BW, sex, and age in a completely randomized design and assigned to receive 1) multiple administrations of BAS at weaning (day 0), days 14, 28, and before transport and feedlot entry (day 42; BAS; RSEA Group, Quartier Salignan, France; n = 9 pens/treatment), or 2) placebo (diethylene glycol monoethyl ether; CON; n = 9 pens/treatment). Treatments (5 mL) were applied to the nuchal skin area of each animal during the preconditioning period. Calves within treatment groups were ranked again by initial BW, sex, and age, in a manner that pens have similar initial BW, age, and three steers and two heifers and allocated to 1 of the18 drylot pens. On day 42, calves were combined within the treatment group, loaded into two different single double-deck commercial livestock trailers, and transported for 1,000 km (approximately 16 h). Upon arrival (day 43), calves were unloaded at the same feedyard. Blood samples were collected on days 0, 3, 7, 14, 21, 28, 42, 43, 46, 50, 57, 64, and 90. Average daily gain, final BW, and feed efficiency did not differ (P > 0.52) between BAS and CON calves in the preconditioning and receiving phases. A treatment × day interaction was detected (P < 0.001) for plasma haptoglobin concentrations, which was greater (P < 0.01) in CON on days 3 and 7 vs. BAS calves. During the preconditioning phase, serum NEFA concentration was reduced (P < 0.01) in BAS on day 3 compared with CON calves. A treatment × day interaction was detected (P = 0.001) for exit velocity, which was greater (P < 0.001) for CON vs. BAS calves on days 3, 7, 14, and 21 during the preconditioning phase and on day 46 of the receiving phase. Therefore, Applications of BAS reduced immunological responses and exit velocity associated with stress caused by management practices, but did not improve performance during the preconditioning and receiving phases.


To mitigate stress caused by inevitable management practices and to enhance cattle health, a preconditioning program is recommended from weaning to feedlot entry. This experiment evaluated the effects of multiple bovine-appeasing substance (BAS) administrations during a preconditioning program followed by feedlot receiving on productivity and health. Applications of BAS diminished immune responses and exit velocity associated with stress caused by management practices, whereas they did not benefit performance during the preconditioning and receiving phases.


Subject(s)
Animal Husbandry , Animals , Cattle/physiology , Male , Female , Animal Husbandry/methods , Weaning , Random Allocation , Transportation
2.
Animals (Basel) ; 11(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34438674

ABSTRACT

Poor maternal nutrition can cause several maladaptive phenotypes in exposed offspring. While non-sex-specific and female-specific adaptations are well-documented, male-specific outcomes are still poorly understood. Of particular interest are the outcomes in bulls and rams, as developmental programming directly impacts long-term productivity of the animal as well as human food security. The following review discusses the impact of poor maternal dietary energy and protein on bull and ram developmental programming as it relates to growth, development, and reproductive capacity. The review also highlights the importance of the timing of maternal dietary insult, as early-, mid-, and late-gestational insults can all have varying effects on offspring.

3.
Animals (Basel) ; 11(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920522

ABSTRACT

Our objectives were to robustly characterize a cohort of Holstein cows for udder and teat type traits and perform high-density genome-wide association studies for those traits within the same group of animals, thereby improving the accuracy of the phenotypic measurements and genomic association study. Additionally, we sought to identify a novel udder and teat trait composite risk index to determine loci with potential pleiotropic effects related to mastitis. This approach was aimed at improving the biological understanding of the genetic factors influencing mastitis. Cows (N = 471) were genotyped on the Illumina BovineHD777k beadchip and scored for front and rear teat length, width, end shape, and placement; fore udder attachment; udder cleft; udder depth; rear udder height; and rear udder width. We used principal component analysis to create a single composite measure describing type traits previously linked to high odds of developing mastitis within our cohort of cows. Genome-wide associations were performed, and 28 genomic regions were significantly associated (Bonferroni-corrected p < 0.05). Interrogation of these genomic regions revealed a number of biologically plausible genes whicht may contribute to the development of mastitis and whose functions range from regulating cell proliferation to immune system signaling, including ZNF683, DHX9, CUX1, TNNT1, and SPRY1. Genetic investigation of the risk composite trait implicated a novel locus and candidate genes that have potentially pleiotropic effects related to mastitis.

4.
Genes (Basel) ; 11(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512769

ABSTRACT

A coat color dilution, called lilac, was observed within the Jacob sheep breed. This dilution results in sheep appearing gray, where black would normally occur. Pedigree analysis suggested an autosomal recessive inheritance. Whole-genome sequencing of a dilute case, a known carrier, and sixteen non-dilute sheep was used to identify the molecular variant responsible for the coat color change. Through investigation of the genes MLPH, MYO5A, and RAB27A, we discovered a nonsynonymous mutation within MLPH, which appeared to match the reported autosomal recessive nature of the lilac dilution. This mutation (NC_019458.2:g.3451931C>A) results in a premature stop codon being introduced early in the protein (NP_001139743.1:p.Glu14*), likely losing its function. Validation testing of additional lilac Jacob sheep and known carriers, unrelated to the original case, showed a complete concordance between the mutation and the dilution. This stop-gain mutation is likely the causative mutation for dilution within Jacob sheep.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Pigmentation/genetics , Sheep/genetics , Animals , Codon, Nonsense/genetics , Exons/genetics , Hair Color/genetics , Mutation/genetics , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Phenotype , rab27 GTP-Binding Proteins/genetics
6.
J Hered ; 110(5): 577-586, 2019 08 16.
Article in English | MEDLINE | ID: mdl-30851038

ABSTRACT

Sheep are seasonally polyestrous, traditionally breeding when the day length shortens in the autumn. The changing photoperiod stimulates reproductive hormones through a series of chemical pathways, ultimately leading to cyclicity. Some breeds of sheep, such as the Polypay and Dorset, have been selected for reduced seasonality and can lamb year-round. Despite this selection, there is still variation within these breeds in the ability to lamb out of season. The identification of out of season lambing quantitative trait loci has the potential to improve genetic progress using genomic selection schemes. Association studies, fixation index (FST), and runs of homozygosity (ROH) were evaluated to identify regions of the genome that influence the ability of ewes to lamb out of season. All analyses used genotypic data from the Illumina Ovine HD beadchip. Genome-wide associations were tested both across breeds in 257 ewes and within the Dorset and Polypay breeds. FST was measured across breeds and between UK and US Dorsets to assess population differences. ROH were estimated in ewes to identify homozygous regions contributing to out of season lambing. Significant associations after multiple testing correction were found through these approaches, leading to the identification of several candidate genes for further study. Genes involved with eye development, reproductive hormones, and neuronal changes were identified as the most promising for influencing the ewe's ability to lamb year-round. These candidate genes could be advantageous for selection for improved year-round lamb production and provide better insight into the complex regulation of seasonal reproduction.


Subject(s)
Genome , Genomics , Reproduction/genetics , Seasons , Sheep/genetics , Animals , Breeding , Fertility , Genome-Wide Association Study , Genomics/methods , Genotyping Techniques , Phenotype , Photoperiod
7.
Am J Vet Res ; 79(5): 538-545, 2018 May.
Article in English | MEDLINE | ID: mdl-29688779

ABSTRACT

OBJECTIVE To identify the genetic cause for congenital photosensitivity and hyperbilirubinemia (CPH) in Southdown sheep. ANIMALS 73 Southdown sheep from a CPH research flock and 48 sheep of various breeds from commercial flocks without CPH. PROCEDURES Whole-genome sequencing was performed for a phenotypically normal Southdown sheep heterozygous for CPH. Heterozygous variants within Slco1b3 coding exons were identified, and exons that contained candidate mutations were amplified by PCR assay methods for Sanger sequencing. Blood samples from the other 72 Southdown sheep of the CPH research flock were used to determine plasma direct and indirect bilirubin concentrations. Southdown sheep with a plasma total bilirubin concentration < 0.3 mg/dL were classified as controls, and those with a total bilirubin concentration ≥ 0.3 mg/dL and signs of photosensitivity were classified as mutants. Sanger sequencing was used to determine the Slco1b3 genotype for all sheep. Genotypes were compared between mutants and controls of the CPH research flock and among all sheep. Protein homology was measured across 8 species to detect evolutionary conservation of Slco1b. RESULTS A nonsynonymous mutation at ovine Chr3:193,691,195, which generated a glycine-to-arginine amino acid change within the predicted Slco1b3 protein, was significantly associated with hyperbilirubinemia and predicted to be deleterious. That amino acid was conserved across 7 other mammalian species. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested a nonsynonymous mutation in Slco1b3 causes CPH in Southdown sheep. This disease appears to be similar to Rotor syndrome in humans. Sheep with CPH might be useful animals for Rotor syndrome research.


Subject(s)
Bilirubin/blood , Hyperbilirubinemia, Hereditary/genetics , Mutation , Photosensitivity Disorders/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Animals , Breeding , Disease Models, Animal , Female , Genetic Variation , Genotype , Heterozygote , Male , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sheep , Sheep Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...