Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 23(25): 4517-4528, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28740340

ABSTRACT

AIM: To enhance the clinical utility of electrogastrography (EGG), which has been recorded since 1922, but is clinically unutilized. METHODS: An innovative method to salvage the promise of EGG is proposed by introducing a preliminary procedure, while maintaining the electrodes, standardized equipment, and signal processing utilized in the well-established EGG testing of today. The proposed enhanced EGG (EEGG) protocol involves swallowing an ingestible capsule containing miniature electronic oscillator embedded in an expandable, self-disintegratable, biocompatible pseudobesoar residing in the stomach for the duration of the test. The benefits of the proposed approach are outlined, tested and discussed in details. RESULTS: Experiments were performed on eight mongrel dogs (6F, 4M, 23.8 ± 3.3 kg). Four were administered an active EEGG capsule, while the rest were given a deactivated (battery removed) capsule. Pharmacologically facilitated gastric motility revealed a significant (P < 0.01) Pearson correlation between gastric motility indices obtained by force transducers implanted directly on the stomach, and the motility indices obtained by EEGG. A particular emphasis was made on preserving standard EGG-related hardware and software in order to facilitate the introduction of the proposed EEGG in environments which already utilize standard EGG testing. The expanded intragastric pseudobezoar containing the miniature electronic oscillator was retained during the tests, and could be disintegrated on demand. CONCLUSION: Enhancing standard EGG by an ingestible, self-expanding and self-disintegrating pseudobesoar containing a miniature electronic oscillator can be an important avenue for clinical applicability of this test.


Subject(s)
Dyspepsia/diagnosis , Electromyography/methods , Gastric Emptying/physiology , Gastroparesis/diagnosis , Stomach/physiology , Animals , Biocompatible Materials , Dogs , Electrodes , Electromyography/instrumentation , Female , Gastric Emptying/drug effects , Humans , Implants, Experimental , Male , Software , Stomach/drug effects , Stomach/surgery , Transducers
2.
IEEE Trans Biomed Circuits Syst ; 11(5): 979-987, 2017 10.
Article in English | MEDLINE | ID: mdl-28574366

ABSTRACT

This paper presents a wearable microsystem for minimally invasive, autonomous, and pseudo-continuous blood glucose monitoring, addressing a growing demand for replacing tedious fingerpricking tests for diabetic patients. Unlike prevalent solutions which estimate blood glucose levels from interstitial fluids or tears, our design extracts a whole blood sample from a small lanced skin wound using a novel shape memory alloy (SMA)-based microactuator and directly measures the blood glucose level from the sample. In vitro characterization determined that the SMA microactuator produced penetration force of 225 gf, penetration depth of 3.55 mm, and consumed approximately 5.56 mW·h for triggering. The microactuation mechanism was also evaluated by extracting blood samples from the wrist of four human volunteers. A total of 19 out of 23 actuations successfully reached capillary vessels below the wrists producing blood droplets on the surface of the skin. The integrated potentiostat-based glucose sensing circuit of our e-Mosquito device also showed a good linear correlation (R2 = 0.9733) with measurements using standard blood glucose monitoring technology. These proof-of-concept studies demonstrate the feasibility of the e-Mosquito microsystem for autonomous intermittent blood glucose monitoring.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Diabetes Mellitus/blood , Wearable Electronic Devices , Humans , Proof of Concept Study
3.
Gastroenterol Res Pract ; 2014: 691532, 2014.
Article in English | MEDLINE | ID: mdl-25574163

ABSTRACT

Transcutaneous intraluminal impedance measurement (TIIM) is a new method to cutaneously measure gastric contractions by assessing the attenuation dynamics of a small oscillating voltage emitted by a battery-powered ingestible capsule retained in the stomach. In the present study, we investigated whether TIIM can reliably assess gastric motility in acute canine models. Methods. Eight mongrel dogs were randomly divided into 2 groups: half received an active TIIM pill and half received an identically sized sham capsule. After 24-hour fasting and transoral administration of the pill (active or sham), two force transducers (FT) were sutured onto the antral serosa at laparotomy. After closure, three standard cutaneous electrodes were placed on the abdomen, registering the transluminally emitted voltage. Thirty-minute baseline recordings were followed by pharmacological induction of gastric contractions using neostigmine IV and another 30-minute recording. Normalized one-minute baseline and post-neostigmine gastric motility indices (GMIs) were calculated and Pearson correlation coefficients (PCCs) between cutaneous and FT GMIs were obtained. Statistically significant GMI PCCs were seen in both baseline and post-neostigmine states. There were no significant GMI PCCs in the sham capsule test. Further chronic animal studies of this novel long-term gastric motility measurement technique are needed before testing it on humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...