Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4234, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454114

ABSTRACT

The chloroquine resistance transporter, PfCRT, of the human malaria parasite Plasmodium falciparum is sensitive to acidic pH. Consequently, PfCRT operates at 60% of its maximal drug transport activity at the pH of 5.2 of the digestive vacuole, a proteolytic organelle from which PfCRT expels drugs interfering with heme detoxification. Here we show by alanine-scanning mutagenesis that E207 is critical for pH sensing. The E207A mutation abrogates pH-sensitivity, while preserving drug substrate specificity. Substituting E207 with Asp or His, but not other amino acids, restores pH-sensitivity. Molecular dynamics simulations and kinetics analyses suggest an allosteric binding model in which PfCRT can accept both protons and chloroquine in a partial noncompetitive manner, with increased proton concentrations decreasing drug transport. Further simulations reveal that E207 relocates from a peripheral to an engaged location during the transport cycle, forming a salt bridge with residue K80. We propose that the ionized carboxyl group of E207 acts as a hydrogen acceptor, facilitating transport cycle progression, with pH sensing as a by-product.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Chloroquine/pharmacology , Membrane Transport Proteins/metabolism , Protozoan Proteins/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hydrogen-Ion Concentration , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...