Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 167(3): 334-43, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23880441

ABSTRACT

Silage is green fodder conserved by lactic acid fermentation performed by epiphytic lactic acid bacteria under anaerobic conditions. To improve the ensiling process and the quality of the resulting silage, starter cultures are added to the fresh forage. A detailed analysis of the microbial community playing a role in grass ensiling has been carried out by high throughput sequencing technologies. Moreover, the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community composition was studied. For this purpose, grass was ensiled untreated or inoculated with L. buchneri CD034. The fresh forage as well as silages after 14 and 58 days of fermentation were characterized physico-chemically. Characteristic silage conditions such as increased titers of lactic acid bacteria and higher concentrations of acetic acid were observed in the inoculated silage in comparison to the untreated samples. Taxonomic community profiles deduced from 16S rDNA amplicon sequences indicated that the relative abundance of Lactococci diminished in the course of fermentations and that the proportion of bacteria belonging to the phyla Proteobacteria and Bacteroidetes increased during the fermentation of untreated silage. In the inoculated silage, members of these phyla were repressed due to an increased abundance of Lactobacilli. In addition, metagenome analyses of silage samples confirmed taxonomic profiles based on 16S rDNA amplicons. Moreover, Lactobacillus plantarum, Lactobacillus brevis and Lactococcus lactis were found to be dominant species within silages as analyzed by means of fragment recruitments of metagenomic sequence reads on complete reference genome sequences. Fragment recruitments also provided clear evidence for the competitiveness of the inoculant strain L. buchneri CD034 during the fermentation of the inoculated silage. The inoculation strain was able to outcompete other community members and also affected physico-chemical characteristics of the silage.


Subject(s)
Bacteria/classification , Lactobacillus/classification , Metagenome/genetics , Microbial Consortia/genetics , Silage/microbiology , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Fermentation , Lactobacillus/genetics , Lactobacillus/isolation & purification , Poaceae , RNA, Ribosomal, 16S/genetics
2.
Antimicrob Agents Chemother ; 52(4): 1496-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18212112

ABSTRACT

Saccharomyces cerevisiae squalene epoxidase contains two highly conserved motifs, 1 and 2, of unknown function. Amino acid substitutions in both regions reduce enzyme activity and/or alter allylamine sensitivity. In the homology model, these motifs flank the flavin adenine dinucleotide cofactor and form part of the interface between cofactor and substrate binding domains.


Subject(s)
Saccharomyces cerevisiae/enzymology , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/metabolism , Allylamine/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Models, Molecular , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Squalene Monooxygenase/genetics , Structure-Activity Relationship
3.
Antimicrob Agents Chemother ; 51(1): 275-84, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17043127

ABSTRACT

Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1. All but one of the amino acid substitutions affected conserved FAD/nucleotide binding sites. The G(25)S, D(335)X (W, F, P), and G(210)A substitutions in the FADI, FADII, and NB sites, respectively, rendered the SE variants nonfunctional. The G(30)S and L(37)P variants exhibited decreased enzymatic activity, accompanied by a sevenfold increase in erg1 mRNA levels and an altered sterol composition, and rendered KLN1 more sensitive not only to allylamines (10 to 25 times) but also to other ergosterol biosynthesis inhibitors. The R(269)G variant exhibited moderately reduced SE activity and a 5- to 10-fold increase in allylamine sensitivity but no cross-sensitivity to the other ergosterol biosynthesis inhibitors. To further elucidate the roles of specific amino acids in SE function and inhibitor interaction, a homology model of Erg1p was built on the basis of the crystal structure of PHBH. All experimental data obtained with the sensitive Erg1 variants support this model. In addition, the amino acids responsible for terbinafine resistance, although they are distributed along the sequence of Erg1p, cluster on the surface of the Erg1p model, giving rise to a putative binding site for allylamines.


Subject(s)
Naphthalenes/pharmacology , Saccharomyces cerevisiae/genetics , Squalene Monooxygenase/genetics , Alleles , Allylamine/metabolism , Amino Acid Substitution/genetics , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Flavin-Adenine Dinucleotide/metabolism , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/metabolism , Sterols/antagonists & inhibitors , Sterols/metabolism , Structure-Activity Relationship , Temperature , Terbinafine
SELECTION OF CITATIONS
SEARCH DETAIL
...