Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cytometry A ; 105(5): 356-367, 2024 05.
Article in English | MEDLINE | ID: mdl-38357742

ABSTRACT

Imaging flow cytometry is an attractive method to investigate individual cells by optical properties. However, imaging flow cytometry applications with clinical relevance are scarce so far. Platelet aggregation naturally occurs during blood coagulation to form a clot. However, aberrant platelet aggregation is associated with cardiovascular disease under steady-state conditions in the blood. Several types of so-called antiplatelet drugs are frequently described to reduce the risk of stroke or cardiovascular diseases. However, an efficient monitoring method is missing to identify the presence and frequency of platelet-platelet aggregates in whole blood on a single cell level. In this work, we employed imaging flow cytometry to identify fluorescently labeled platelets in whole blood with a conditional gating strategy. Images were post-processed and aligned. A convolutional neural network was designed to identify platelet-platelet aggregates of two, three, and more than three platelets, and results were validated against various data set properties. In addition, the neural network excluded erythrocyte-platelet aggregates from the results. Based on the results, a parameter for detecting platelet-platelet aggregates, the weighted platelet aggregation, was developed. If employed on a broad scale with proband and patient samples, our method could aid in building a future diagnostic marker for cardiovascular disease and monitoring parameters to optimize drug prescriptions in such patient groups.


Subject(s)
Blood Platelets , Flow Cytometry , Neural Networks, Computer , Platelet Aggregation , Single-Cell Analysis , Humans , Flow Cytometry/methods , Blood Platelets/metabolism , Platelet Aggregation/drug effects , Single-Cell Analysis/methods , Platelet Aggregation Inhibitors/pharmacology
2.
JAMA Netw Open ; 6(1): e2251512, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36656578

ABSTRACT

Importance: One of the biggest challenges when using anti-vascular endothelial growth factor (VEGF) agents to treat retinopathy of prematurity (ROP) is the need to perform long-term follow-up examinations to identify eyes at risk of ROP reactivation requiring retreatment. Objective: To evaluate whether an artificial intelligence (AI)-based vascular severity score (VSS) can be used to analyze ROP regression and reactivation after anti-VEGF treatment and potentially identify eyes at risk of ROP reactivation requiring retreatment. Design, Setting, and Participants: This prognostic study was a secondary analysis of posterior pole fundus images collected during the multicenter, double-blind, investigator-initiated Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity (CARE-ROP) randomized clinical trial, which compared 2 different doses of ranibizumab (0.12 mg vs 0.20 mg) for the treatment of ROP. The CARE-ROP trial screened and enrolled infants between September 5, 2014, and July 14, 2016. A total of 1046 wide-angle fundus images obtained from 19 infants at predefined study time points were analyzed. The analyses of VSS were performed between January 20, 2021, and November 18, 2022. Interventions: An AI-based algorithm assigned a VSS between 1 (normal) and 9 (most severe) to fundus images. Main Outcomes and Measures: Analysis of VSS in infants with ROP over time and VSS comparisons between the 2 treatment groups (0.12 mg vs 0.20 mg of ranibizumab) and between infants who did and did not receive retreatment for ROP reactivation. Results: Among 19 infants with ROP in the CARE-ROP randomized clinical trial, the median (range) postmenstrual age at first treatment was 36.4 (34.7-39.7) weeks; 10 infants (52.6%) were male, and 18 (94.7%) were White. The mean (SD) VSS was 6.7 (1.9) at baseline and significantly decreased to 2.7 (1.9) at week 1 (P < .001) and 2.9 (1.3) at week 4 (P < .001). The mean (SD) VSS of infants with ROP reactivation requiring retreatment was 6.5 (1.9) at the time of retreatment, which was significantly higher than the VSS at week 4 (P < .001). No significant difference was found in VSS between the 2 treatment groups, but the change in VSS between baseline and week 1 was higher for infants who later required retreatment (mean [SD], 7.8 [1.3] at baseline vs 1.7 [0.7] at week 1) vs infants who did not (mean [SD], 6.4 [1.9] at baseline vs 3.0 [2.0] at week 1). In eyes requiring retreatment, higher baseline VSS was correlated with earlier time of retreatment (Pearson r = -0.9997; P < .001). Conclusions and Relevance: In this study, VSS decreased after ranibizumab treatment, consistent with clinical disease regression. In cases of ROP reactivation requiring retreatment, VSS increased again to values comparable with baseline values. In addition, a greater change in VSS during the first week after initial treatment was found to be associated with a higher risk of later ROP reactivation, and high baseline VSS was correlated with earlier retreatment. These findings may have implications for monitoring ROP regression and reactivation after anti-VEGF treatment.


Subject(s)
Ranibizumab , Retinopathy of Prematurity , Infant, Newborn , Infant , Humans , Male , Female , Ranibizumab/therapeutic use , Retinopathy of Prematurity/drug therapy , Vascular Endothelial Growth Factor A , Artificial Intelligence , Fundus Oculi
4.
Biomaterials ; 278: 120433, 2021 11.
Article in English | MEDLINE | ID: mdl-34562836

ABSTRACT

Major blood loss still is a risk factor during surgery. Electrocauterization often is used for necrotizing the tissue and thereby halts bleeding (hemostasis). However, the carbonized tissue is prone to falling off, putting patients at risk of severe side effects, such as dangerous internal bleeding many hours after surgery. We have developed a medical gas plasma jet technology as an alternative to electrocauterization and investigated its hemostatic (blood clotting) effects and mechanisms of action using whole human blood. The gas plasma efficiently coagulated anticoagulated donor blood, which resulted from the local lysis of red blood cells (hemolysis). Image cytometry further showed enhanced platelet aggregation. Gas plasmas release reactive oxygen species (ROS), but neither scavenging of long-lived ROS nor addition of chemically-generated ROS were able to abrogate or recapitulate the gas plasma effect, respectively. However, platelet activation was markedly impaired in platelet-rich plasma when compared to gas plasma-treated whole blood that moreover contained significant amounts of hemoglobin indicative of red blood cell lysis (hemolysis). Finally, incubation of whole blood with concentration-matched hemolysates phenocopied the gas plasmas-mediated platelet activation. These results will spur the translation of plasma systems for hemolysis into clinical practice.


Subject(s)
Blood Coagulation , Hemostatics , Blood Platelets , Hemostasis , Humans , Platelet Activation , Platelet Aggregation
5.
Redox Biol ; 30: 101423, 2020 02.
Article in English | MEDLINE | ID: mdl-31931281

ABSTRACT

Cold physical plasma is a partially ionized gas investigated as a new anticancer tool in selectively targeting cancer cells in monotherapy or in combination with therapeutic agents. Here, we investigated the intrinsic resistance mechanisms of tumor cells towards physical plasma treatment. When analyzing the dose-response relationship to cold plasma-derived oxidants in 11 human cancer cell lines, we identified four 'resistant' and seven 'sensitive' cell lines. We observed stable intracellular glutathione levels following plasma treatment only in the 'resistant' cell lines indicative of altered antioxidant mechanisms. Assessment of proteins involved in GSH metabolism revealed cystine-glutamate antiporter xCT (SLC7A11) to be significantly more abundant in the 'resistant' cell lines as compared to 'sensitive' cell lines. This decisive role of xCT was confirmed by pharmacological and genetic inhibition, followed by cold physical plasma treatment. Finally, microscopy analysis of ex vivo plasma-treated human melanoma punch biopsies suggested a correlation between apoptosis and basal xCT protein abundance. Taken together, our results demonstrate that xCT holds the potential as a biomarker predicting the sensitivity of tumor cells towards plasma treatment.


Subject(s)
Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Drug Resistance, Neoplasm , Melanoma/genetics , Plasma Gases/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Neoplastic , Glutathione/metabolism , HeLa Cells , Humans , Male , Melanoma/metabolism , Middle Aged , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL