Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475403

ABSTRACT

Y-shaped polymer brushes represent a special class of binary mixed polymer brushes, in which a combination of different homopolymers leads to unique phase behavior. While most theoretical and simulation studies use monodisperse models, experimental systems are always polydisperse. This discrepancy hampers linking theoretical and experimental results. In this theoretical study, we employed dissipative particle dynamics to study the influence of polydispersity on the phase behavior of Y-shaped brushes grafted to flat surfaces under good solvent conditions. Polydispersity was kept within experimentally achievable values and was modeled via Schulz-Zimm distribution. In total, 10 systems were considered, thus covering the phase behavior of monodisperse, partially polydisperse and fully polydisperse systems. Using such generic representation of real polymers, we observed a rippled structure and aggregates in monodisperse systems. In addition, polydisperse brushes formed a stable perforated layer not observed previously in monodisperse studies, and influenced the stability of the remaining phases. Although the perforated layer was experimentally observed under good solvent conditions and in the melt state, further confirmation of its presence in systems under good solvent conditions required mapping real polymers onto mesoscale models that reflected, for example, different polymer rigidity, and excluded volume effects or direct influence of the surface, just to mention a few parameters. Finally, in this work, we show that mesoscale modeling successfully describes polydisperse models, which opens the way for rapid exploring of complex systems such as polydisperse Y-shaped brushes in selective or bad solvents or under non-equilibrium conditions.

2.
ACS Nano ; 16(12): 20902-20914, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36459668

ABSTRACT

Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis to molecular sensing, cell targeting, imaging, and cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties that were inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e., self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs and detect and compare local environments in a way that is agnostic and automated, i.e., with no need of a priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being the thickness of the organic shell and solvation primary factors in the determining number and nature of multiple coexisting environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for the rational design of O-I nanomaterials instructed from data.


Subject(s)
Metal Nanoparticles , Nanostructures , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Hydrophobic and Hydrophilic Interactions
3.
J Colloid Interface Sci ; 607(Pt 2): 1373-1381, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34583042

ABSTRACT

The ability to control the properties of monolayer protected gold nanoparticles (MPNPs) discloses unrevealed features stemming from collective properties of the ligands forming the monolayer and presents opportunities to design new materials. To date, the influence of ligand end-group size and capacity to form hydrogen bonds on structure and hydration of small MPNPs (<5 nm) has been poorly studied. Here, we show that both features determine ligands order, solvent accessibility, capacity to host hydrophobic compounds and interfacial properties of MPNPs. The polarity perceived by a radical probe and its binding constant with the monolayer investigated by electron spin resonance is rationalized by molecular dynamics simulations, which suggest that larger space-filling groups - trimethylammonium, zwitterionic and short polyethylene glycol - favor a radial organization of the thiolates, whereas smaller groups - as sulfonate - promote the formation of bundles. Zwitterionic ligands create a surface network of hydrogen bonds, which affects nanoparticle hydrophobicity and maximize the partition equilibrium constant of the probe. This study discloses the role of the chemistry of the end-group on monolayer features with effects that span from molecular- to nano-scale and opens the door to a shift in the conception of new MPNPs exploiting the end-group as a novel design motif.


Subject(s)
Gold , Metal Nanoparticles , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Dynamics Simulation
4.
Polymers (Basel) ; 12(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114271

ABSTRACT

Design and preparation of functional nanomaterials with specific properties requires precise control over their microscopic structure. A prototypical example is the self-assembly of diblock copolymers, which generate highly ordered structures controlled by three parameters: the chemical incompatibility between blocks, block size ratio and chain length. Recent advances in polymer synthesis have allowed for the preparation of gradient copolymers with controlled sequence chemistry, thus providing additional parameters to tailor their assembly. These are polydisperse monomer sequence, block size distribution and gradient strength. Here, we employ dissipative particle dynamics to describe the self-assembly of gradient copolymer melts with strong, intermediate, and weak gradient strength and compare their phase behavior to that of corresponding diblock copolymers. Gradient melts behave similarly when copolymers with a strong gradient are considered. Decreasing the gradient strength leads to the widening of the gyroid phase window, at the expense of cylindrical domains, and a remarkable extension of the lamellar phase. Finally, we show that weak gradient strength enhances chain packing in gyroid structures much more than in lamellar and cylindrical morphologies. Importantly, this work also provides a link between gradient copolymers morphology and parameters such as chemical incompatibility, chain length and monomer sequence as support for the rational design of these nanomaterials.

5.
Langmuir ; 36(20): 5671-5679, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32348150

ABSTRACT

The sensing of small molecules poses the challenge of developing devices able to discriminate between compounds that may be structurally very similar. Here, attention has been paid to the use of self-assembled monolayer (SAM)-protected gold nanoparticles since they enable a modular approach to tune single-molecule affinity and selectivity simply by changing functional moieties (i.e., covering ligands), along with multivalent molecular recognition. To date, the discovery of monolayers suitable for a specific molecular target has relied on trial-and-error approaches, with ligand chemistry being the main criterion used to modulate selectivity and sensitivity. By using molecular dynamics, we showcase that either individual molecular characteristics and/or collective features such as ligand flexibility, monolayer organization, ligand local ordering, and interfacial solvent properties can also be exploited conveniently. The knowledge of the molecular mechanisms that drive the recognition of small molecules on SAM-covered nanoparticles will critically expand our ability to manipulate and control such supramolecular systems.

6.
Colloids Surf B Biointerfaces ; 185: 110574, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31704605

ABSTRACT

Nanogels represent a pivotal class of biomaterials in the therapeutic intracellular treatment of many diseases, especially those involving the central nervous system (CNS). Their biocompatibility and synergy with the biological environment encourage their cellular uptake, releasing the curative cargo in the desired area. As a main drawback, microglia are generally able to phagocytize any foreign element overcoming the blood brain barrier (BBB), including these materials, drastically limiting their bioavailability for the target cells. In this work, we investigated the opportunity to tune and therefore reduce nanogel internalization in microglia cultures, exploiting the orthogonal chemical functionalization with primary amine groups, as a surface coating strategy. Nanogels are designed by following two methods: the direct grafting of aliphatic primary amines and the linkage of -NH2 modified PEG on the nanogel surface. The latter synthesis was proposed to evaluate the combination of PEGylation with the basic nitrogen atom. The achieved results indicate the possibility of effectively modulating the uptake of nanogels, in particular limiting their internalization using the PEG-NH2 coating. This outcome could be considered a promising strategy for the development of carriers for drugs or gene delivery that could overcome microglia scavenging.


Subject(s)
Amines/pharmacology , Coated Materials, Biocompatible/pharmacology , Endocytosis/drug effects , Microglia/cytology , Nanogels/chemistry , Animals , Cell Survival/drug effects , Dynamic Light Scattering , Fluorescence , Mice, Inbred C57BL , Microglia/drug effects , Models, Molecular , Particle Size , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
7.
Nanomaterials (Basel) ; 9(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652985

ABSTRACT

Nanogels are chemically crosslinked polymeric nanoparticles endowed with high encapsulation ability, tunable size, ease of preparation, and responsiveness to external stimuli. The presence of specific functional groups on their surfaces provides an opportunity to tune their surface properties and direct their behavior. In this work, we used mesoscale modeling to describe conformational and mechanical properties of nanogel surfaces formed by crosslinked polyethylene glycol and polyethyleneimine, and grafted by charged alkylamine brushes of different lengths. Simulations show that both number of chains per area and chain length can be used to tune the properties of the coating. Properly selecting these two parameters allows switching from a hydrated, responsive coating to a dried, highly charged layer. The results also suggest that the scaling behavior of alkylamine brushes, e.g., the transition from a mushroom to semi-dilute brush, is only weakly coupled with the shielding ability of the coating and much more with its compressibility.

8.
J Nanosci Nanotechnol ; 19(5): 2943-2949, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501804

ABSTRACT

We use dissipative particle dynamics to simulate the controlled transport of flexible polymers through coated slit and cylindrical pores. Pores are coated inside with solvent-sensitive polymer brushes. Stretch-to-collapse transition then controls the permeability of the coated pores. We change the solvent quality with respect to the polymer brushes and study the flow of flexible polymers through the pores. We show that stretched brush chains close the pores and compress the polymers in the centre of the pores. The collapsed brush chains relieve compression and rapid change in permeability is observed. In open pore state, polymers partially accommodate on the brush layer and partially migrate towards the center of the pores, where the flux is maximal. Finally, we observe that polymers tend to align in the direction of the flow.

9.
Phys Chem Chem Phys ; 20(9): 6533-6547, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29446424

ABSTRACT

The sorption of graft copolymers on surfaces attractive only for the backbone and its effect on the conformational behavior of adsorbed/desorbed chains in solvents good for the grafts and poor for the backbone was studied by coarse-grained computer simulations. It was found that the sorption and conformational behavior are very complex and are results of an intricate interplay of solvent quality (polymer-solvent interactions) and solvent strength (polymer-surface vs. solvent-surface interactions). Increasing grafting density and length of grafts protect the backbone against adsorption, but the behavior is non-trivial. A decrease in solvent quality promotes the adsorption, because it lowers the overall solubility, but the backbone collapses and the probability of backbone-surface contacts decreases, which simultaneously hinders the adsorption. The results of simulations are presented in the form of phase diagrams depicting the decisive features of the conformational and sorption behavior.

10.
Soft Matter ; 13(8): 1634-1645, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28133676

ABSTRACT

We use a meso-scale dissipative particle dynamics method to simulate the flow and aggregation of rod-like protein solutions through pores grafted with a solvent-sensitive polymer brush. The coated pores can control protein permeability and aggregation by a stretch-to-collapse conformational transition of the brush polymers in response to changes in the solvent quality. The protein solutions mimic aqueous glycoprotein solutions and proteins are represented as rod-like objects formed by coarse-grain beads. The model further employs two types of beads to represent the existence of cystein-like terminal groups in real glycoproteins and mimic the aggregation of real glycoproteins in aqueous solutions. We vary the solvent quality with respect to the brush chains and study the flow and aggregation of rod-like proteins in the slit and cylindrical pores as the brush polymers undergo the stretch-to-collapse transition. The results show that stretched brush chains close the pore, hamper proteins' flow and promote proteins' aggregation. The collapsed brush chains open the pores for proteins' flow and suppress their aggregation. Therefore, we observe more than a ten-fold reduction in the permeation rate of proteins in both pore geometries. Finally, due to pore confinement, larger proteins' aggregates are formed in the slit pore than in the cylindrical pore, while more pronounced orientation of proteins in the flow direction is seen in the cylindrical pore than in the slit pore.


Subject(s)
Models, Molecular , Polymers/chemistry , Protein Aggregates , Proteins/chemistry , Porosity , Protein Conformation , Solvents/chemistry , Surface Properties , Water/chemistry
11.
Soft Matter ; 12(15): 3600-11, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26980360

ABSTRACT

In this work, the structural features of spherical gold nanoparticles (NPs) decorated with highly grafted poly(styrene) (PS), poly(vinylpyridine) (PVP) and PS-PVP diblock copolymer brushes immersed in a good solvent are investigated by means of Dissipative Particle Dynamics (DPD) simulations as a function of grafted chain length and of homopolymer and copolymer chain composition. For NPs grafted either by PS or PVP homopolymer brushes (selected as a proof of concept), good agreement between the Daoud-Cotton theory, experimental evidence, and our DPD simulations is observed in the scaling behavior of single chain properties, especially for longer grafted chains, and in brush thickness prediction. On the other hand, for grafted chain lengths comparable to NP dimensions parabolic-like profiles of the end-monomer distributions are obtained. Furthermore, a region of high concentration of polymer segments is observed in the monomer density distribution for long homopolymers. In the case of copolymer-decorated NPs, the repulsion between PS and PVP blocks is found to substantially influence the radius of gyration and the shape of the end-monomer distribution of the relevant polymer shell. Moreover, for diblock chains, the un-swollen region is observed to be thinner (and, correspondingly, the swollen layer thicker) than that of a NP modified with a homopolymer of the same length. Finally, the lateral segregation of PS and PVP blocks is evidenced by our calculations and a detailed analysis of the corona behavior is reported, thus revealing the key parameters in controlling the surface properties and the response of diblock copolymer modified nanoparticles.

12.
Phys Chem Chem Phys ; 14(15): 5164-77, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22349449

ABSTRACT

We present molecular dynamics simulations of the air-liquid interface for three room temperature ionic liquids with a common anion: bis(trifluoromethylsulfonyl) imide ([Tf(2)N]), and imidazolium-based cations that differ in the alkyl tail length: 1-butyl-3-methylimidazolium ([C(4)mim]), 1-hexyl-3-methylimidazolium ([C(6)mim]), and 1-octyl-3-methylimidazolium ([C(8)mim]). The CHARMM type force field is used with the partial charges based on quantum calculations for isolated ion pairs. The total charge on cations and anions is around 0.9e and -0.9e, respectively, which somewhat mimics the anion to cation charge transfer and many-body effects. The surface tension at 300 K is computed using the mechanical route and its value slightly overpredicts experimental values. The air-liquid interface is analyzed using the intrinsic method of Identification of the Truly Interfacial Molecules. Structural and dynamic properties of the interfacial, sub-interfacial and central layers are determined. To describe the structure of the interface, we compute the surface roughness, number density and charge density profiles, and orientation ordering of the ions. We further determine the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to characterize the dynamics of the cations and anions in the layers. We found a significant enhancement of the cation density and preferential orientation ordering of both the cations and anions at the interface. Overall, the surface of the interfacial layer is smoother than the surface of the sub-interfacial layer and the roughness of both the interfacial and sub-interfacial layers increases with the increase of the length of the cation alkyl tail. Finally, the ions stay considerably longer in the interfacial layer than in the sub-interfacial layer and dynamics of exchange of the ions between the consecutive layers is related to the distinct diffusion and re-orientation dynamics behavior of the ions within the layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...