Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(4): 437-438, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579681

ABSTRACT

Anti-CD19 CAR T cells were among the last decade's scientific breakthroughs, achieving remarkable remissions in patients with B cell leukemias and lymphomas. Now, the engineered cell therapies are traversing disease indications into autoimmunity and resolving disease symptoms in patients with systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis.1.


Subject(s)
Immunotherapy, Adoptive , Lupus Erythematosus, Systemic , Neoplasms , Humans , Autoimmunity/immunology , Lupus Erythematosus, Systemic/therapy , T-Lymphocytes , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/therapeutic use
2.
Nat Immunol ; 24(12): 1994-2007, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012406

ABSTRACT

The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Killer Cells, Natural , Immunotherapy, Adoptive/methods , Cell- and Tissue-Based Therapy
3.
Mol Cancer Ther ; 22(10): 1204-1214, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37451822

ABSTRACT

The lack of antibodies with sufficient cancer selectivity is currently limiting the treatment of solid tumors by immunotherapies. Most current immunotherapeutic targets are tumor-associated antigens that are also found in healthy tissues and often do not display sufficient cancer selectivity to be used as targets for potent antibody-based immunotherapeutic treatments, such as chimeric antigen receptor (CAR) T cells. Many solid tumors, however, display aberrant glycosylation that results in expression of tumor-associated carbohydrate antigens that are distinct from healthy tissues. Targeting aberrantly glycosylated glycopeptide epitopes within existing or novel glycoprotein targets may provide the cancer selectivity needed for immunotherapy of solid tumors. However, to date only a few such glycopeptide epitopes have been targeted. Here, we used O-glycoproteomics data from multiple cell lines to identify a glycopeptide epitope in CD44v6, a cancer-associated CD44 isoform, and developed a cancer-specific mAb, 4C8, through a glycopeptide immunization strategy. 4C8 selectively binds to Tn-glycosylated CD44v6 in a site-specific manner with low nanomolar affinity. 4C8 was shown to be highly cancer specific by IHC of sections from multiple healthy and cancerous tissues. 4C8 CAR T cells demonstrated target-specific cytotoxicity in vitro and significant tumor regression and increased survival in vivo. Importantly, 4C8 CAR T cells were able to selectively kill target cells in a mixed organotypic skin cancer model having abundant CD44v6 expression without affecting healthy keratinocytes, indicating tolerability and safety.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/pharmacology , Neoplasms/pathology , Glycoproteins , Epitopes , Glycopeptides
4.
Blood Adv ; 7(14): 3416-3430, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37058474

ABSTRACT

A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Skin Neoplasms , Adult , Humans , Animals , Mice , Receptors, CCR4/metabolism , T-Lymphocytes, Regulatory
5.
Cell ; 186(8): 1814-1814.e1, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37059073

ABSTRACT

Therapeutic modalities that engage the immune system to recognize and eliminate cancer, known as cancer immunotherapy, has emerged as a distinct pillar of cancer therapy. Among the most promising treatment approaches are therapeutic vaccines, immune checkpoint blockade, bispecific T-cell engagers (BiTEs) and adoptive cell therapies. These approaches share a common mechanism of action, which is elicitation of a T-cell-based immune response, either endogenous or engineered, against tumor antigens, but interactions between the innate immune system, particularly antigen-presenting cells, and immune effectors also underlie the efficacy of cancer immunotherapies and approaches engaging these cells are also under development. To view this SnapShot, open or download the PDF.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy , T-Lymphocytes , Cancer Vaccines/therapeutic use
6.
Cancer J ; 29(1): 28-33, 2023.
Article in English | MEDLINE | ID: mdl-36693155

ABSTRACT

ABSTRACT: Genetically engineered chimeric antigen receptor (CAR) T-cell therapy leverages the ability of the immune system to eliminate tumors and redirects cytotoxic functions toward cells expressing specified tumor-restricted antigens. Although 6 CAR T-cell therapies have received Food and Drug Administration (FDA) approval for the treatment of many hematological malignancies, limitations involving T cell-intrinsic, T cell-extrinsic, and therapeutic factors remain in the treatment of both liquid and solid tumors. Chimeric antigen receptor design, signals from the tumor microenvironment, tumor antigen escape mechanisms, and systemic inflammatory consequences of CAR T-cell infusion all influence the efficacy and feasibility of CAR T-cell therapy in different malignancies. Here, we review the core structure of the CAR, the evolution of different CAR generations, CAR T-cell therapy limitations, and current strategies being investigated to overcome the T cell-intrinsic, T cell-independent, and therapeutic barriers to successful CAR T-cell therapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Neoplasms/therapy , Antigens, Neoplasm , Tumor Microenvironment , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics
7.
Cancer Cell ; 40(12): 1470-1487.e7, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36513049

ABSTRACT

Despite the success of CAR-T cell cancer immunotherapy, challenges in efficacy and safety remain. Investigators have begun to enhance CAR-T cells with the expression of accessory molecules to address these challenges. Current systems rely on constitutive transgene expression or multiple viral vectors, resulting in unregulated response and product heterogeneity. Here, we develop a genetic platform that combines autonomous antigen-induced production of an accessory molecule with constitutive CAR expression in a single lentiviral vector called Uni-Vect. The broad therapeutic application of Uni-Vect is demonstrated in vivo by activation-dependent expression of (1) an immunostimulatory cytokine that improves efficacy, (2) an antibody that ameliorates cytokine-release syndrome, and (3) transcription factors that modulate T cell biology. Uni-Vect is also implemented as a platform to characterize immune receptors. Overall, we demonstrate that Uni-Vect provides a foundation for a more clinically actionable next-generation cellular immunotherapy.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Genetic Vectors/genetics , Cytokines/metabolism
8.
Nat Commun ; 13(1): 4121, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840578

ABSTRACT

The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide, including CD53, CD10, EVI2B, and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally, we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological, therapeutic, and diagnostic understanding of myeloma.


Subject(s)
Multiple Myeloma , Drug Resistance , Humans , Immunotherapy/methods , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proteomics , Tumor Microenvironment
9.
J Immunol ; 208(2): 278-285, 2022 01 15.
Article in English | MEDLINE | ID: mdl-35017217

ABSTRACT

Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/transplantation , CTLA-4 Antigen/metabolism , Cell- and Tissue-Based Therapy/methods , Galectin 1/immunology , Galectin 3/immunology , Galectins/immunology , Humans , Immunomodulation/immunology , Lymphocyte Activation/immunology , Neoplasms/immunology , Polysaccharides/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
10.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943864

ABSTRACT

T-cell therapies have made significant improvements in cancer treatment over the last decade. One cellular therapy utilizing T-cells involves the use of a chimeric MHC-independent antigen-recognition receptor, typically referred to as a chimeric antigen receptor (CAR). CAR molecules, while mostly limited to the recognition of antigens on the surface of tumor cells, can also be utilized to exploit the diverse repertoire of macromolecules targetable by antibodies, which are incorporated into the CAR design. Leaning into this expansion of target macromolecules will enhance the diversity of antigens T-cells can target and may improve the tumor-specificity of CAR T-cell therapy. This review explores the types of macromolecules targetable by T-cells through endogenous and synthetic antigen-specific receptors.


Subject(s)
Antigens/metabolism , Immunity, Cellular , Macromolecular Substances/metabolism , Receptors, Chimeric Antigen/metabolism , Animals , Humans , Polysaccharides/metabolism , RNA/metabolism
11.
Nat Commun ; 12(1): 4365, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272369

ABSTRACT

Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαß isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinogenesis/immunology , Epitopes, T-Lymphocyte/immunology , Lung Neoplasms/immunology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adoptive Transfer , Alleles , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Histocompatibility Antigens Class I/immunology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mutation , Peptides/genetics , Peptides/immunology , Proteomics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Xenograft Model Antitumor Assays
13.
Nat Cancer ; 2(9): 873-875, 2021 09.
Article in English | MEDLINE | ID: mdl-35121869
14.
Cancer Cell ; 38(5): 621-623, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33064993

ABSTRACT

CD19-specific CAR-T cell therapies are the gold standard of adoptive cellular immunotherapy for hematopoietic malignancies. In Science Translational Medicine, Park et al. develop an oncolytic vaccinia virus that introduces truncated CD19 expression in solid tumors, which are then eradicated by CD19-specific CAR-T cells in immunodeficient and immunocompetent mouse models.


Subject(s)
Neoplasms , Oncolytic Viruses , Animals , Antigens, CD19 , Immunotherapy , Immunotherapy, Adoptive , Mice , Neoplasms/therapy , T-Lymphocytes/immunology
15.
Cancer Cell ; 38(3): 297-300, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32931736

ABSTRACT

We stand against racism and discrimination in cancer research in the U.S. By sharing the stories of scientists from different ethnicities, identities, and national origins, we want to promote change through mentoring, active participation, and policy changes and to inspire the next generation of cancer researchers: we make better science together.


Subject(s)
Biomedical Research/statistics & numerical data , Cultural Diversity , Ethnicity/statistics & numerical data , Mentoring/statistics & numerical data , Neoplasms/therapy , Research Personnel/statistics & numerical data , Biomedical Research/education , Ethnicity/psychology , Humans , Neoplasms/diagnosis , Research Personnel/psychology , United States
16.
Cell ; 183(1): 126-142.e17, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32961131

ABSTRACT

CD19-directed immunotherapies are clinically effective for treating B cell malignancies but also cause a high incidence of neurotoxicity. A subset of patients treated with chimeric antigen receptor (CAR) T cells or bispecific T cell engager (BiTE) antibodies display severe neurotoxicity, including fatal cerebral edema associated with T cell infiltration into the brain. Here, we report that mural cells, which surround the endothelium and are critical for blood-brain-barrier integrity, express CD19. We identify CD19 expression in brain mural cells using single-cell RNA sequencing data and confirm perivascular staining at the protein level. CD19 expression in the brain begins early in development alongside the emergence of mural cell lineages and persists throughout adulthood across brain regions. Mouse mural cells demonstrate lower levels of Cd19 expression, suggesting limitations in preclinical animal models of neurotoxicity. These data suggest an on-target mechanism for neurotoxicity in CD19-directed therapies and highlight the utility of human single-cell atlases for designing immunotherapies.


Subject(s)
Blood-Brain Barrier/metabolism , Epithelial Cells/metabolism , Immunotherapy, Adoptive/adverse effects , Animals , Antibodies, Bispecific/immunology , Antigens, CD19/immunology , B-Lymphocytes/immunology , Blood-Brain Barrier/immunology , Brain/immunology , Brain/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred NOD , Mice, SCID , Muscle, Smooth, Vascular/metabolism , Neoplasms , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Single-Cell Analysis/methods , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
17.
J Clin Invest ; 130(6): 3087-3097, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32069268

ABSTRACT

Chimeric antigen receptor-T (CAR-T) cell therapies can eliminate relapsed and refractory tumors, but the durability of antitumor activity requires in vivo persistence. Differential signaling through the CAR costimulatory domain can alter the T cell metabolism, memory differentiation, and influence long-term persistence. CAR-T cells costimulated with 4-1BB or ICOS persist in xenograft models but those constructed with CD28 exhibit rapid clearance. Here, we show that a single amino acid residue in CD28 drove T cell exhaustion and hindered the persistence of CD28-based CAR-T cells and changing this asparagine to phenylalanine (CD28-YMFM) promoted durable antitumor control. In addition, CD28-YMFM CAR-T cells exhibited reduced T cell differentiation and exhaustion as well as increased skewing toward Th17 cells. Reciprocal modification of ICOS-containing CAR-T cells abolished in vivo persistence and antitumor activity. This finding suggests modifications to the costimulatory domains of CAR-T cells can enable longer persistence and thereby improve antitumor response.


Subject(s)
CD28 Antigens/immunology , Immunity, Cellular , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Th17 Cells/immunology , Cell Line, Tumor , Humans , Inducible T-Cell Co-Stimulator Protein/immunology , Neoplasms/pathology , Th17 Cells/pathology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
18.
Blood ; 135(7): 505-509, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31703119

ABSTRACT

Unintentional transduction of B-cell acute lymphoblastic leukemia blasts during CART19 manufacturing can lead to CAR19+ leukemic cells (CARB19) that are resistant to CART19 killing. We developed an anti-CAR19 idiotype chimeric antigen receptor (αCAR19) to specifically recognize CAR19+ cells. αCAR19 CAR T cells efficiently lysed CARB19 cells in vitro and in a primary leukemia-derived xenograft model. We further showed that αCAR19-CART cells could be used as an "antidote" to deplete CART19 cells to reduce long-term side effects, such as B-cell aplasia.


Subject(s)
Antigens, CD19/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cytotoxicity, Immunologic , Humans , Immunotherapy, Adoptive , Mice
19.
Methods Mol Biol ; 2086: 203-211, 2020.
Article in English | MEDLINE | ID: mdl-31707678

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies are ex vivo manufactured cellular products that have been useful in the treatment of blood cancers and solid tumors. The quality of the final cellular product is influenced by several amenable factors during the manufacturing process. This review discusses several of the influences on cell product phenotype, including the raw starting material, methods of activation and transduction, and culture supplementation.


Subject(s)
Cell Differentiation , Immunotherapy, Adoptive , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Biomarkers , Cell Culture Techniques/methods , Cell Differentiation/genetics , Cell Differentiation/immunology , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Lymphocyte Activation/genetics , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics
20.
Mol Ther Methods Clin Dev ; 12: 145-156, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30666307

ABSTRACT

T cells engineered with chimeric antigen receptors (CARs) have emerged as a potent new class of therapeutics for cancer, based on their remarkable potency in blood cancers. Since the first clinical reports of their efficacy emerged 7 years ago, investigators have focused on the mechanisms and properties that make CARs effective or toxic, and their effects on T cell biology. Novel CAR designs coupled with improvements in gene transfer technology, incorporating advances in gene editing, have the potential to increase access to engineered cell therapies, as well as improve their potency in solid tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...