Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 36(6): 1198-1227, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38669692

ABSTRACT

Small data learning problems are characterized by a significant discrepancy between the limited number of response variable observations and the large feature space dimension. In this setting, the common learning tools struggle to identify the features important for the classification task from those that bear no relevant information and cannot derive an appropriate learning rule that allows discriminating among different classes. As a potential solution to this problem, here we exploit the idea of reducing and rotating the feature space in a lower-dimensional gauge and propose the gauge-optimal approximate learning (GOAL) algorithm, which provides an analytically tractable joint solution to the dimension reduction, feature segmentation, and classification problems for small data learning problems. We prove that the optimal solution of the GOAL algorithm consists in piecewise-linear functions in the Euclidean space and that it can be approximated through a monotonically convergent algorithm that presents-under the assumption of a discrete segmentation of the feature space-a closed-form solution for each optimization substep and an overall linear iteration cost scaling. The GOAL algorithm has been compared to other state-of-the-art machine learning tools on both synthetic data and challenging real-world applications from climate science and bioinformatics (i.e., prediction of the El Niño Southern Oscillation and inference of epigenetically induced gene-activity networks from limited experimental data). The experimental results show that the proposed algorithm outperforms the reported best competitors for these problems in both learning performance and computational cost.

2.
J Imaging ; 8(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35735955

ABSTRACT

We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford−Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford−Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index >90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.

3.
Neural Comput ; 34(5): 1220-1255, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35344997

ABSTRACT

Classification problems in the small data regime (with small data statistic T and relatively large feature space dimension D) impose challenges for the common machine learning (ML) and deep learning (DL) tools. The standard learning methods from these areas tend to show a lack of robustness when applied to data sets with significantly fewer data points than dimensions and quickly reach the overfitting bound, thus leading to poor performance beyond the training set. To tackle this issue, we propose eSPA+, a significant extension of the recently formulated entropy-optimal scalable probabilistic approximation algorithm (eSPA). Specifically, we propose to change the order of the optimization steps and replace the most computationally expensive subproblem of eSPA with its closed-form solution. We prove that with these two enhancements, eSPA+ moves from the polynomial to the linear class of complexity scaling algorithms. On several small data learning benchmarks, we show that the eSPA+ algorithm achieves a many-fold speed-up with respect to eSPA and even better performance results when compared to a wide array of ML and DL tools. In particular, we benchmark eSPA+ against the standard eSPA and the main classes of common learning algorithms in the small data regime: various forms of support vector machines, random forests, and long short-term memory algorithms. In all the considered applications, the common learning methods and eSPA are markedly outperformed by eSPA+, which achieves significantly higher prediction accuracy with an orders-of-magnitude lower computational cost.


Subject(s)
Algorithms , Machine Learning , Entropy , Support Vector Machine
4.
Front Artif Intell ; 4: 739432, 2021.
Article in English | MEDLINE | ID: mdl-35072059

ABSTRACT

Mislabeling of cases as well as controls in case-control studies is a frequent source of strong bias in prognostic and diagnostic tests and algorithms. Common data processing methods available to the researchers in the biomedical community do not allow for consistent and robust treatment of labeled data in the situations where both, the case and the control groups, contain a non-negligible proportion of mislabeled data instances. This is an especially prominent issue in studies regarding late-onset conditions, where individuals who may convert to cases may populate the control group, and for screening studies that often have high false-positive/-negative rates. To address this problem, we propose a method for a simultaneous robust inference of Lasso reduced discriminative models and of latent group-specific mislabeling risks, not requiring any exactly labeled data. We apply it to a standard breast cancer imaging dataset and infer the mislabeling probabilities (being rates of false-negative and false-positive core-needle biopsies) together with a small set of simple diagnostic rules, outperforming the state-of-the-art BI-RADS diagnostics on these data. The inferred mislabeling rates for breast cancer biopsies agree with the published purely empirical studies. Applying the method to human genomic data from a healthy-ageing cohort reveals a previously unreported compact combination of single-nucleotide polymorphisms that are strongly associated with a healthy-ageing phenotype for Caucasians. It determines that 7.5% of Caucasians in the 1000 Genomes dataset (selected as a control group) carry a pattern characteristic of healthy ageing.

SELECTION OF CITATIONS
SEARCH DETAIL
...