Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(1): 011005, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478451

ABSTRACT

New particles in theories beyond the standard model can manifest as stable relics that interact strongly with visible matter and make up a small fraction of the total dark matter abundance. Such particles represent an interesting physics target since they can evade existing bounds from direct detection due to their rapid thermalization in high-density environments. In this work we point out that their annihilation to visible matter inside large-volume neutrino telescopes can provide a new way to constrain or discover such particles. The signal is the most pronounced for relic masses in the GeV range, and can be efficiently constrained by existing Super-Kamiokande searches for dinucleon annihilation. We also provide an explicit realization of this scenario in the form of secluded dark matter coupled to a dark photon, and we show that the present method implies novel and stringent bounds on the model that are complementary to direct constraints from beam dumps, colliders, and direct detection experiments.

2.
Rep Prog Phys ; 86(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36279851

ABSTRACT

Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors.

3.
Phys Rev Lett ; 129(23): 231801, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36563227

ABSTRACT

Standard model CP violation associated with the phase of the Cabibbo-Kobayashi-Maskawa quark mixing matrix is known to give small answers for the electric dipole moment (EDM) observables. Moreover, predictions for the EDMs of neutrons and diamagnetic atoms suffer from considerable uncertainties. We point out that the CP-violating observables associated with the electron spin (paramagnetic EDMs) are dominated by the combination of the electroweak penguin diagrams and ΔI=1/2 weak transitions in the baryon sector, and are calculable within chiral perturbation theory. The predicted size of the semileptonic operator C_{S} is 7×10^{-16}, which corresponds to the equivalent electron EDM d_{e}^{eq}=1.0×10^{-35} e cm. While still far from the current observational limits, this result is 3 orders of magnitude larger than previously believed.

4.
Phys Rev Lett ; 128(13): 131803, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35426710

ABSTRACT

Given current discrepancy in muon g-2 and future dedicated efforts to measure muon electric dipole moment (EDM) d_{µ}, we assess the indirect constraints imposed on d_{µ} by the EDM measurements performed with heavy atoms and molecules. We notice that the dominant muon EDM effect arises via the muon-loop induced "light-by-light" CP-odd amplitude ∝BE^{3}, and in the vicinity of a large nucleus the corresponding parameter of expansion can be significant, eE_{nucl}/m_{µ}^{2}∼0.04. We compute the d_{µ}-induced Schiff moment of the ^{199}Hg nucleus, and the linear combination of d_{e} and semileptonic C_{S} operator (dominant in this case) that determine the CP-odd effects in the ThO molecule. The results, d_{µ}(^{199}Hg)<6×10^{-20} e cm and d_{µ}(ThO)<2×10^{-20} e cm, constitute approximately threefold and ninefold improvements over the limits on d_{µ} extracted from the Brookhaven National Laboratory muon beam experiment.

5.
Nat Phys ; 17(12): 1396-1401, 2021.
Article in English | MEDLINE | ID: mdl-34966439

ABSTRACT

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

6.
Phys Rev Lett ; 127(6): 061805, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34420351

ABSTRACT

Mirror sectors have been proposed to address the problems of dark matter, baryogenesis, and the neutron lifetime anomaly. In this work we study a new, powerful probe of mirror neutrons: neutron star temperatures. When neutrons in the neutron star core convert to mirror neutrons during collisions, the vacancies left behind in the nucleon Fermi seas are refilled by more energetic nucleons, releasing immense amounts of heat in the process. We derive a new constraint on the allowed strength of neutron-mirror-neutron mixing from observations of the coldest (sub-40 000 Kelvin) neutron star, PSR 2144-3933. Our limits compete with laboratory searches for neutron-mirror-neutron transitions but apply to a range of mass splittings between the neutron and mirror neutron that is 19 orders of magnitude larger. This heating mechanism, also pertinent to other neutron disappearance channels such as exotic neutron decay, provides a compelling physics target for upcoming ultraviolet, optical, and infrared telescopes to study thermal emissions of cold neutron stars.

7.
Phys Rev Lett ; 127(1): 011102, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270284

ABSTRACT

We introduce a novel class of signatures-spectral edges and end points-in 21-cm measurements resulting from interactions between the standard and dark sectors. Within the context of a kinetically mixed dark photon, we demonstrate how resonant dark photon-to-photon conversions can imprint distinctive spectral features in the observed 21-cm brightness temperature, with implications for current, upcoming, and proposed experiments targeting the cosmic dawn and the dark ages. These signatures open up a qualitatively new way to look for physics beyond the Standard Model using 21-cm observations.

8.
Phys Rev Lett ; 125(23): 231803, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337221

ABSTRACT

We show that in a special class of dark sector models, the hydrogen atom can serve as a portal to new physics, through its decay occurring in abundant populations in the Sun and on Earth. The large fluxes of hydrogen decay daughter states can be detected via their decay or scattering. By constructing two models for either detection channel, we show that the recently reported excess in electron recoils at xenon1t could be explained by such signals in large regions of parameter space unconstrained by proton and hydrogen decay limits.

9.
Phys Rev Lett ; 124(18): 181802, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441984

ABSTRACT

Weak-scale dark matter particles, in collisions with nuclei, can mediate transitions between different nuclear energy levels. In particular, owing to sizeable momentum exchange, dark matter particles can enable de-excitation of nuclear isomers that are extremely long lived with respect to regular radioactive decays. In this Letter, we utilize data from a past experiment with ^{180}Ta^{m} to search for γ lines that would accompany dark matter induced de-excitation of this isomer. Nonobservation of such transitions above background yields the first direct constraint on the lifetime of ^{180}Ta^{m} against dark matter initiated transitions: T_{1/2}>1.3×10^{14} a at 90% credibility. Using this result, we derive novel constraints on dark matter models with strongly interacting relics and on models with inelastic dark matter particles. Existing constraints are strengthened by this independent new method. The obtained limits are also valid for the standard model γ-decay of ^{180}Ta^{m}.

10.
Phys Rev Lett ; 122(17): 171801, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31107056

ABSTRACT

All attempts to directly detect particle dark matter (DM) scattering on nuclei suffer from the partial or total loss of sensitivity for DM masses in the GeV range or below. We derive novel constraints from the inevitable existence of a subdominant, but highly energetic, component of DM generated through collisions with cosmic rays. Subsequent scattering inside conventional DM detectors, as well as neutrino detectors sensitive to nuclear recoils, limits the DM-nucleon scattering cross section to be below 10^{-31} cm^{2} for both spin-independent and spin-dependent scattering of light DM.

11.
Phys Rev Lett ; 122(7): 071801, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848629

ABSTRACT

We set constraints and future sensitivity projections on millicharged particles (MCPs) based on electron scattering data in numerous neutrino experiments, starting with MiniBooNE and the Liquid Scintillator Neutrino Detector (LSND). Both experiments are found to provide new (and leading) constraints in certain MCP mass windows: 5-35 MeV for LSND and 100-180 MeV for MiniBooNE. Furthermore, we provide projections for the ongoing Fermilab SBN program, the Deep Underground Neutrino Experiment (DUNE), and the proposed Search for Hidden Particles (SHIP) experiment. In the SBN program, SBND and MicroBooNE have the capacity to provide the leading bounds in the 100-300 MeV mass regime. DUNE and SHIP are capable of probing parameter space for MCP masses in the range of 5 MeV-5 GeV that is significantly beyond the reach of existing bounds, including those from collider searches and, in the case of DUNE, the SLAC mQ experiment.

12.
Phys Rev Lett ; 121(3): 031103, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085827

ABSTRACT

We show that, despite stringent constraints on the shape of the main part of the cosmic microwave background (CMB) spectrum, there is considerable room for its modification within its Rayleigh-Jeans (RJ) end, ω≪T_{CMB}. We construct explicit new physics models that give an order one (or larger) increase of photon count in the RJ tail, which can be tested by existing and upcoming experiments aiming to detect the cosmological 21 cm emission or absorption signal. This class of models stipulates the decay of unstable particles to dark photons A^{'} that have a small mass, m_{A^{'}}∼10^{-14}-10^{-9} eV, nonvanishing mixing angle ε with electromagnetism, and energies much smaller than T_{CMB}. The nonthermal number density of dark photons can be many orders of magnitude above the number density of CMB photons, and even a small probability of A^{'}→A oscillations, for values as small as ε∼10^{-9}, can significantly increase the number of RJ photons. In particular, we show that resonant oscillations of dark photons into regular photons in the interval of redshifts 20

13.
Phys Rev Lett ; 120(14): 141801, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29694128

ABSTRACT

If dark matter (DM) particles are lighter than a few MeV/c^{2} and can scatter off electrons, their interaction within the solar interior results in a considerable hardening of the spectrum of galactic dark matter received on Earth. For a large range of the mass versus cross section parameter space, {m_{e},σ_{e}}, the "reflected" component of the DM flux is far more energetic than the end point of the ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive to an energy deposition of 10-10^{3} eV. After numerically simulating the small reflected component of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving new constraints on σ_{e} in the MeV and sub-MeV range using existing data from the XENON10/100, LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold direct detection experiments.

14.
Phys Rev Lett ; 121(25): 259903, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30608838

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.120.141801.

15.
Nat Commun ; 8(1): 1195, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084959

ABSTRACT

Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s-1. Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.

16.
Phys Rev Lett ; 119(14): 141803, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053293

ABSTRACT

We derive new constraints on light vectors coupled to standard model (SM) fermions, when the corresponding SM current is broken by the chiral anomaly. The cancellation of the anomaly by heavy fermions results, in the low-energy theory, in Wess-Zumino-type interactions between the new vector and the SM gauge bosons. These interactions are determined by the requirement that the heavy sector preserves the SM gauge groups and lead to (energy/vector mass)^{2} enhanced rates for processes involving the longitudinal mode of the new vector. Taking the example of a vector coupled to a vector coupled to SM baryon number, Z decays and flavor-changing neutral current meson decays via the new vector can occur with (weak scale/vector mass)^{2} enhanced rates. These processes place significantly stronger coupling bounds than others considered in the literature, over a wide range of vector masses.

17.
Phys Rev Lett ; 116(21): 211303, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284644

ABSTRACT

We point out that the cosmological abundance of ^{7}Li can be reduced down to observed values if during its formation, big bang nucleosynthesis is modified by the presence of light electrically neutral particles X that have substantial interactions with nucleons. We find that the lithium problem can be solved without affecting the precisely measured abundances of deuterium and helium if the following conditions are satisfied: the mass (energy) and lifetimes of such particles are bounded by 1.6 MeV≤m_{X}(E_{X})≤20 MeV and few100s≲τ_{X}≲10^{4} s, and the abundance times the absorption cross section by either deuterium or ^{7}Be are comparable to the Hubble rate, n_{X}σ_{abs}v∼H, at the time of ^{7}Be formation. We include X-initiated reactions into the primordial nucleosynthesis framework, observe that it leads to a substantial reduction of the freeze-out abundances of ^{7}Li+^{7}Be, and find specific model realizations of this scenario. Concentrating on the axionlike-particle case, X=a, we show that all these conditions can be satisfied if the coupling to d quarks is in the range of f_{d}^{-1}∼TeV^{-1}, which can be probed at intensity frontier experiments.

18.
Phys Rev Lett ; 116(15): 151801, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27127956

ABSTRACT

A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,µ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

19.
Phys Rev Lett ; 113(9): 091801, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215977

ABSTRACT

The production of a µ+ µ- pair from the scattering of a muon neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a subweak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the standard model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, Lµ-Lτ. The new gauge boson Z', increases the rate of neutrino trident production by inducing additional (µÎ³αµ)(νγ(α)ν) interactions, which interfere constructively with the standard model contribution. Existing experimental results put significant restrictions on the parameter space of any model coupled to muon number Lµ, and disfavor a putative resolution to the muon g-2 discrepancy via the loop of Z' for any mass mZ'≳400 MeV. The reach to the models' parameter space can be widened with future searches of the trident production at high-intensity neutrino facilities such as the LBNE.

20.
Phys Rev Lett ; 111(4): 041302, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931353

ABSTRACT

Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12) eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...