Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Drug Target ; 31(2): 134-141, 2023 02.
Article in English | MEDLINE | ID: mdl-36066550

ABSTRACT

Introduction: Obesity is considered a chronic non-communicable disease characterised by excess body fat. In recent years the prevalence of obesity has grown a lot. Individuals with obesity store the excess of nutrients consumed in the form of fat in adipose tissue, and generate an imbalance of this tissue, where there is the secretion of adipocytokines, which contributes to a peripheral and central inflammatory picture, reaching the central nervous system (CNS), generating neuroinflammation. There is still no effective and safe therapy for the treatment of obesity, many of the drugs marketed has serious side effects. Therefore, there is a search for therapies aimed mainly at reducing inflammation.Objective: In this work the possibility of using a new therapeutic option for obesity will be explored, using nanotechnology. Nanotechnology has gained prominence in recent years for being a promising technology for treatment and as a molecule-in-the-light in inflammatory diseases. Gold nanoparticles (GNP) stand out among nanomaterials because they demonstrate anti-inflammatory characteristics by various pathways, and have been widely used in the treatment of inflammatory diseases, including in the CNS, demonstrating excellent results.Result: Thus, the use of GNP for the treatment of obesity is promising due to the inflammatory state of obesity, thus acting as anti-inflammatory at the peripheral and central levels.


Subject(s)
Gold , Metal Nanoparticles , Humans , Gold/therapeutic use , Neuroinflammatory Diseases , Obesity/drug therapy , Obesity/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Article in English | MEDLINE | ID: mdl-34894049

ABSTRACT

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Subject(s)
Cigarette Smoking , Metal Nanoparticles , Pulmonary Disease, Chronic Obstructive , Administration, Intranasal , Animals , Bronchoalveolar Lavage Fluid , Gold/pharmacology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Nicotiana
3.
J Nanosci Nanotechnol ; 21(11): 5493-5498, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33980359

ABSTRACT

Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.


Subject(s)
Nanoparticles , Serum Albumin, Bovine , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Polymethyl Methacrylate
4.
Colloids Surf B Biointerfaces ; 201: 111608, 2021 May.
Article in English | MEDLINE | ID: mdl-33618084

ABSTRACT

Hypercholesterolemia has been linked to neurodegenerative disease development. Previously others and we demonstrated that high levels of plasma cholesterol-induced memory impairments and depressive-like behavior in mice. More recently, some evidence reported that a hypercholesterolemic diet led to motor alterations in rodents. Peripheral inflammation, blood-brain barrier (BBB) dysfunction, and neuroinflammation seem to be the connective factors between hypercholesterolemia and brain disorders. Herein, we aimed to investigate whether treatment with gold nanoparticles (GNPs) can prevent the inflammation, BBB disruption, and behavioral changes related to neurodegenerative diseases and depression, induced by hypercholesterolemic diet intake in mice. Adult Swiss mice were fed a standard or a high cholesterol diet for eight weeks and concomitantly treated with either vehicle or GNPs by the oral route. At the end of treatments, mice were subjected to behavioral tests. After that, the blood, liver, and brain structures were collected for biochemical analysis. The high cholesterol diet-induced an increase in the plasma cholesterol levels and body weight of mice, which were not modified by GNPs treatment. Hypercholesterolemia was associated with enhanced liver tumor necrosis factor- α (TNF-α), BBB dysfunction in the hippocampus and olfactory bulb, memory impairment, cataleptic posture, and depressive-like behavior. Notably, GNPs administration attenuated liver inflammation, BBB dysfunction, and improved behavioral and memory deficits in hypercholesterolemic mice. Also, GNPs increased mitochondrial complex I activity in the prefrontal cortex of mice. It is worth highlight that GNPs' administration did not cause toxic effects in the liver and kidney of mice. Overall, our results indicated that GNPs treatment potentially mitigated peripheral, brain, and memory impairments related to hypercholesterolemia.


Subject(s)
Hypercholesterolemia , Metal Nanoparticles , Neurodegenerative Diseases , Animals , Gold , Hypercholesterolemia/drug therapy , Mice , Nanotechnology
5.
J Drug Target ; 28(1): 46-54, 2020 01.
Article in English | MEDLINE | ID: mdl-31046473

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary myopathy characterised by progressive muscle degeneration in male children. As a consequence of DMD, increased inflammation and oxidative stress occur in muscle tissue along with morphological changes. Several studies have reported anti-inflammatory and antioxidant effects of gold nanoparticles (GNP) in muscle injury models. The objective of this study was to evaluate these effects along with the impacts of the disease on histopathological changes following chronic administration of GNP to Mdx mice. Two-month-old Mdx mice were separated into five groups of eight individuals each, as follows: wild-type (WT), Mdx-modified without treatment, Mdx + 2.5 mg/kg GNP, Mdx + 7.0 mg/kg GNP and Mdx + 21 mg/kg GNP. GNP with a mean diameter of 20 nm were injected subcutaneously at concentrations of 2.5, 7.0 and 21 mg/kg. Treatments continued for 30 d with injections administered at 48-h intervals. Twenty-four hours after the last injection, the animals were killed and the central region of the gastrocnemius muscle was surgically removed. Chronic administration of GNP reduced inflammation in the gastrocnemius muscle of Mdx mice and reduced morphological alterations due to inflammatory responses to muscular dystrophy. In addition, GNP also demonstrated antioxidant potential by reducing the production of reactive oxygen and nitrogen species, reducing oxidative damage and improving antioxidant activity.


Subject(s)
Gold/pharmacology , Inflammation Mediators/metabolism , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Animals , Biomarkers , Disease Models, Animal , Dose-Response Relationship, Drug , Inflammation/drug therapy , Mice , Mice, Inbred mdx , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...