Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Behav ; 239: 113507, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34175361

ABSTRACT

Sleep is a universal and extremely complicated function. Sleep is regulated by two systems-sleep homeostasis and circadian rhythms. In a wide range of species, neuropeptides have been found to play a crucial role in the communication and synchronization between different components of both systems. In the fruit fly Drosophila melanogaster, SIFamide (SIFa) is a neuropeptide that has been reported to be expressed in 4 neurons in the pars intercerebralis (PI) area of the brain. Previous work has shown that transgenic ablation of SIFa neurons, mutation of SIFa itself, or knockdown of SIFa receptors reduces sleep, suggesting that SIFa is sleep-promoting. However, those were all constitutive manipulations that could have affected development or resulted in compensation, so the role of SIFa signaling in sleep regulation during adulthood remains unclear. In the current study, we examined the sleep-promoting effect of SIFa through an optogenetic approach, which allowed for neuronal activation with high temporal resolution, while leaving development unaffected. We found that activation of the red-light sensor Chrimson in SIFa neurons promoted sleep in flies in a sexually dimorphic manner, where the magnitude of the sleep effect was greater in females than in males. Because neuropeptidergic neurons often also release other transmitters, we used RNA interference to knock down SIFa while also optogenetically activating SIFa neurons. SIFa knockdown only partially reduced the magnitude of the sleep effect, suggesting that release of other transmitters may contribute to the sleep induction when SIFa neurons are activated. Video-based analysis showed that activation of SIFa neurons for as brief a period as 1 second was able to decrease walking behavior for minutes after the stimulus. Future studies should aim to identify the transmitters that are utilized by SIFa neurons and characterize their upstream activators and downstream targets. It would also be of interest to determine how acute optogenetic activation of SIFa neurons alters other behaviors that have been linked to SIFa, such as mating and feeding.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Circadian Rhythm , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Male , Neurons , Optogenetics , Sleep
2.
Physiol Behav ; 206: 143-156, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30935941

ABSTRACT

Sleep abnormalities have widespread and costly public health consequences, yet we have only a rudimentary understanding of the events occurring at the cellular level in the brain that regulate sleep. Several key signaling molecules that regulate sleep across taxa come from the family of neuropeptide transmitters. For example, in Drosophila melanogaster, the neuropeptide Y (NPY)-related transmitter short neuropeptide F (sNPF) appears to promote sleep. In this study, we utilized optogenetic activation of neuronal populations expressing sNPF to determine the causal effects of precisely timed activity in these cells on sleep behavior. Combining sNPF-GAL4 and UAS-Chrimson transgenes allowed us to activate sNPF neurons using red light. We found that activating sNPF neurons for as little as 3 s at a time of day when most flies were awake caused a rapid transition to sleep that persisted for another 2+ hours following the stimulation. Changing the timing of red light stimulation to times of day when flies were already asleep caused the control flies to wake up (due to the pulse of light), but the flies in which sNPF neurons were activated stayed asleep through the light pulse, and then showed further increases in sleep at later points when they would have normally been waking up. Video recording of individual fly responses to short-term (0.5-20 s) activation of sNPF neurons demonstrated a clear light duration-dependent decrease in movement during the subsequent 4-min period. These results provide supportive evidence that sNPF-producing neurons promote long-lasting increases in sleep, and show for the first time that even brief periods of activation of these neurons can cause changes in behavior that persist after cessation of activation. We have also presented evidence that sNPF neuron activation produces a homeostatic sleep drive that can be dissipated at times long after the neurons were stimulated. Future studies will determine the specific roles of sub-populations of sNPF-producing neurons, and will also assess how sNPF neurons act in concert with other neuronal circuits to control sleep.


Subject(s)
Drosophila Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Sleep/physiology , Animals , Brain/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Neuropeptides/genetics , Optogenetics
4.
Chemosphere ; 181: 368-375, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28458212

ABSTRACT

We examined accumulation, sequestration, elimination, and genetic variation for lead (Pb) loads within and between generations of Drosophila melanogaster. Flies were reared in control or leaded medium at various doses and tested for their Pb loads at different stages of development (larvae, eclosion, newly-eclosed adults, and mature adults). Pb loads were tested using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We found that D. melanogaster readily accumulated Pb throughout their lifespan and the levels of accumulation increased with Pb exposure in the medium. Wandering third-instar larvae accumulated more Pb than mature adults; this phenomenon may be due to elimination of Pb in the pupal cases during eclosion and/or depuration in adults post-eclosion. The accumulated Pb in mature adults was not transferred to F1 mature adult offspring. Using a set of recombinant inbred strains, we identified a quantitative trait locus for adult Pb loads and found that genetic variation accounted for 34% of the variance in Pb load. We concluded that D. melanogaster is a useful model organism for evaluating changes in Pb loads during development, as well as between generations. Furthermore, we found that genetic factors can influence Pb loads; this provides an essential foundation for evaluating phenotypic variation induced by the toxic effects of Pb.


Subject(s)
Drosophila melanogaster/metabolism , Lead/analysis , Lead/pharmacokinetics , Life Cycle Stages/drug effects , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Genetic Variation , Larva/growth & development , Lead/toxicity , Mass Spectrometry , Quantitative Trait Loci
5.
Front Genet ; 3: 68, 2012.
Article in English | MEDLINE | ID: mdl-22586431

ABSTRACT

Drosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD). Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 µg/dl), can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function. In order to better understand how lead affects neuronal plasticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory who have joined forces to study the effects of lead on the Drosophila nervous system. Studying the effects of lead on Drosophila nervous system development will give us a better understanding of the mechanisms of Pb neurotoxicity in the developing human nervous system.

6.
Physiol Behav ; 99(2): 254-9, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-19800356

ABSTRACT

Environmental exposure to Pb(2+) affects hormone-mediated responses in vertebrates. To help establish the fruit fly, Drosophila melanogaster, as a model system for studying such disruption, we describe effects of Pb(2+) on hormonally regulated traits. These include duration of development, longevity, females' willingness to mate, fecundity and adult locomotor activity. Developmental Pb(2+) exposure has been shown to affect gene expression in a specific region of the Drosophila genome (approximately 122 genes) involved in lead-induced changes in adult locomotion and to affect regulation of intracellular calcium levels associated with neuronal activity at identified synapses in the larval neuromuscular junction. We suggest ways in which Drosophila could become a new model system for the study of endocrine disruptors at genetic, neural and behavioral levels of analysis, particularly by use of genomic methods. This will facilitate efforts to distinguish between behavioral effects of Pb(2+) caused by direct action on neural mechanisms versus effects of Pb(+2) on behavior mediated through endocrine disruption.


Subject(s)
Behavior, Animal/drug effects , Drosophila melanogaster/drug effects , Endocrine Disruptors/toxicity , Gene Expression Regulation, Developmental/drug effects , Organometallic Compounds/toxicity , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Male , Motor Activity/drug effects , Sex Characteristics
7.
Neurotoxicology ; 30(6): 898-914, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19737576

ABSTRACT

The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called "genetical genomics" studies have identified locally acting eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL that might be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 microM sodium acetate), or lead-treated food (made with 250 microM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5-10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2396 genes with trans-eQTL which mapped to 12 major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression.


Subject(s)
Environmental Pollutants/toxicity , Gene Expression Regulation/drug effects , Lead/toxicity , Quantitative Trait Loci/genetics , Toxicogenetics , Animals , Drosophila , Female , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genes, Duplicate , Male , Oligonucleotide Array Sequence Analysis/methods
8.
Neurotoxicology ; 30(5): 741-53, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19647018

ABSTRACT

Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.


Subject(s)
Behavior/drug effects , Genetics , Neurotoxicity Syndromes , Neurotoxins/toxicity , Toxicology , Animals , Disease Models, Animal , Humans , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/psychology , Phylogeny
9.
Neurotoxicology ; 30(2): 305-11, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19428504

ABSTRACT

We developed Drosophila melanogaster as a model to study correlated behavioral, neuronal and genetic effects of the neurotoxin lead, known to affect cognitive and behavioral development in children. We showed that, as in vertebrates, lead affects both synaptic development and complex behaviors (courtship, fecundity, locomotor activity) in Drosophila. By assessing differential behavioral responses to developmental lead exposure among recombinant inbred Drosophila lines (RI), derived from parental lines Oregon R and Russian 2b, we have now identified a genotype by environment interaction (GEI) for a behavioral trait affected by lead. Drosophila Activity Monitors (TriKinetics, Waltham, MA), which measure activity by counting the number of times a single fly in a small glass tube walks through an infrared beam aimed at the middle of the tube, were used to measure activity of flies, reared from eggs to 4 days of adult age on either control or lead-contaminated medium, from each of 75 RI lines. We observed a significant statistical association between the effect of lead on Average Daytime Activity (ADA) across lines and one marker locus, 30AB, on chromosome 2; we define this as a Quantitative Trait Locus (QTL) associated with behavioral effects of developmental lead exposure. When 30AB was from Russian 2b, lead significantly increased locomotor activity, whereas, when 30AB was from Oregon R, lead decreased it. 30AB contains about 125 genes among which are likely "candidate genes" for the observed lead-dependent behavioral changes. Drosophila are thus a useful, underutilized model for studying behavioral, synaptic and genetic changes following chronic exposure to lead or other neurotoxins during development.


Subject(s)
Behavior, Animal/drug effects , Drosophila melanogaster/drug effects , Genetic Variation/drug effects , Lead/toxicity , Quantitative Trait Loci/drug effects , Animals , Behavior, Animal/physiology , Drosophila melanogaster/physiology , Genetic Variation/genetics , Lead/administration & dosage , Lead Poisoning/genetics , Male , Motor Activity/drug effects , Motor Activity/physiology , Quantitative Trait Loci/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...