Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671216

ABSTRACT

The prediction of health disorders is the goal of many sensor systems in dairy farming. Although mastitis and lameness are the most common health disorders in dairy cows, these diseases or treatments are a rare event related to a single day and cow. A number of studies already developed and evaluated models for classifying cows in need of treatment for mastitis and lameness with machine learning methods, but few have illustrated the effects of the positive predictive value (PPV) on practical application. The objective of this study was to investigate the importance of low-frequency treatments of mastitis or lameness for the applicability of these classification models in practice. Data from three German dairy farms contained animal individual sensor data (milkings, activity, feed intake) and were classified using machine learning models developed in a previous study. Subsequently, different risk criteria (previous treatments, information from milk recording, early lactation) were designed to isolate high-risk groups. Restricting selection to cows with previous mastitis or hoof treatment achieved the highest increase in PPV from 0.07 to 0.20 and 0.15, respectively. However, the known low daily risk of a treatment per cow remains the critical factor that prevents the reduction of daily false-positive alarms to a satisfactory level. Sensor systems should be seen as additional decision-support aid to the farmers' expert knowledge.


Subject(s)
Animal Husbandry/instrumentation , Cattle Diseases/diagnosis , Dairying , Lameness, Animal/diagnosis , Mastitis/diagnosis , Animals , Cattle , Farms , Female , Lactation , Milk
2.
J Dairy Sci ; 103(10): 9604-9619, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32747103

ABSTRACT

Using data from targeted metabolomics in serum in combination with machine learning (ML) approaches, we aimed at (1) identifying divergent metabotypes in overconditioned cows and at (2) exploring how metabotypes are associated with lactation performance, blood metabolites, and hormones. In a previously established animal model, 38 pregnant multiparous Holstein cows were assigned to 2 groups that were fed differently to reach either high (HBCS) or normal (NBCS) body condition score (BCS) and backfat thickness (BFT) until dryoff at -49 d before calving [NBCS: BCS < 3.5 (3.02 ± 0.24) and BFT < 1.2 cm (0.92 ± 0.21), mean ± SD; HBCS: BCS > 3.75 (3.82 ± 0.33) and BFT > 1.4 cm (2.36 ± 0.35)]. Cows were then fed the same diets during the dry period and the subsequent lactation, and maintained the differences in BFT and BCS throughout the study. Blood samples were collected weekly from 7 wk antepartum (ap) to 12 wk postpartum (pp) to assess serum concentrations of metabolites (by targeted metabolomics and by classical analyses) and metabolic hormones. Metabolic clustering by applying 4 supervised ML-based classifiers [sequential minimal optimization (SMO), random forest (RF), alternating decision tree (ADTree), and naïve Bayes-updatable (NB)] on the changes (d 21 pp minus d 49 ap) in concentrations of 170 serum metabolites resulted in 4 distinct metabolic clusters: HBCS predicted HBCS (HBCS-PH, n = 13), HBCS predicted NBCS (HBCS-PN, n = 6), NBCS predicted NBCS (NBCS-PN, n = 15), and NBCS predicted HBCS (NBCS-PH, n = 4). The accuracies of SMO, RF, ADTree, and NB classifiers were >70%. Because the number of NBCS-PH cows was low, we did not consider this group for further comparisons. Dry matter intake (kg/d and percentage of body weight) and energy intake were greater in HBCS-PN than in HBCS-PH in early lactation, and HBCS-PN also reached a positive energy balance earlier than did HBCS-PH. Milk yield was not different between groups, but milk protein percentage was greater in HBCS-PN than in HBCS-PH cows. The circulating concentrations of fatty acids (FA) increased during early lactation in both groups, but HBCS-PN cows had lower concentrations of ß-hydroxybutyrate, indicating lower ketogenesis compared with HBCS-PH cows. The concentrations of insulin, insulin-like growth factor 1, leptin, adiponectin, haptoglobin, glucose, and revised quantitative insulin sensitivity check index did not differ between the groups, whereas serum concentrations of glycerophospholipids were lower before calving in HBCS-PH than in HBCS-PN cows. Glycine was the only amino acid that had higher concentration after calving in HBCS-PH than in HBCS-PN cows. The circulating concentrations of some short- (C2, C3, and C4) and long-chain (C12, C16:0, C18:0, and C18:1) acylcarnitines on d 21 pp were greater in HBCS-PH than in HBCS-PN cows, indicating incomplete FA oxidation. In conclusion, the use of ML approaches involving data from targeted metabolomics in serum is a promising method for differentiating divergent metabotypes from apparently similar BCS phenotypes. Further investigations, using larger numbers of cows and farms, are warranted for confirmation of this finding.


Subject(s)
Cattle/physiology , Machine Learning , Metabolome/physiology , Metabolomics/instrumentation , Peripartum Period , Animals , Energy Metabolism , Female
3.
Sensors (Basel) ; 20(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664417

ABSTRACT

The aim of this study was to develop classification models for mastitis and lameness treatments in Holstein dairy cows as the target variables based on continuous data from herd management software with modern machine learning methods. Data was collected over a period of 40 months from a total of 167 different cows with daily individual sensor information containing milking parameters, pedometer activity, feed and water intake, and body weight (in the form of differently aggregated data) as well as the entered treatment data. To identify the most important predictors for mastitis and lameness treatments, respectively, Random Forest feature importance, Pearson's correlation and sequential forward feature selection were applied. With the selected predictors, various machine learning models such as Logistic Regression (LR), Support Vector Machine (SVM), K-nearest neighbors (KNN), Gaussian Naïve Bayes (GNB), Extra Trees Classifier (ET) and different ensemble methods such as Random Forest (RF) were trained. Their performance was compared using the receiver operator characteristic (ROC) area-under-curve (AUC), as well as sensitivity, block sensitivity and specificity. In addition, sampling methods were compared: Over- and undersampling as compensation for the expected unbalanced training data had a high impact on the ratio of sensitivity and specificity in the classification of the test data, but with regard to AUC, random oversampling and SMOTE (Synthetic Minority Over-sampling) even showed significantly lower values than with non-sampled data. The best model, ET, obtained a mean AUC of 0.79 for mastitis and 0.71 for lameness, respectively, based on testing data from practical conditions and is recommended by us for this type of data, but GNB, LR and RF were only marginally worse, and random oversampling and SMOTE even showed significantly lower values than without sampling. We recommend the use of these models as a benchmark for similar self-learning classification tasks. The classification models presented here retain their interpretability with the ability to present feature importances to the farmer in contrast to the "black box" models of Deep Learning methods.


Subject(s)
Lameness, Animal/diagnosis , Lameness, Animal/therapy , Machine Learning , Mastitis/diagnosis , Mastitis/therapy , Animals , Bayes Theorem , Cattle , Dairying , Female , Milk , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...