Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Neth Heart J ; 31(7-8): 300-307, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37488328

ABSTRACT

INTRODUCTION: The MYH7 c.5135G > A p.(Arg1712Gln) variant has been identified in several patients worldwide and is classified as pathogenic in the ClinVar database. We aimed to delineate its associated phenotype and evaluate a potential founder effect. METHODS: We retrospectively collected clinical and genetic data of 22 probands and 74 family members from an international cohort. RESULTS: In total, 53 individuals carried the MYH7 p.(Arg1712Gln) variant, of whom 38 (72%) were diagnosed with hypertrophic cardiomyopathy (HCM). Mean age at HCM diagnosis was 48.8 years (standard deviation: 18.1; range: 8-74). The clinical presentation ranged from asymptomatic HCM to arrhythmias (atrial fibrillation and malignant ventricular arrhythmias). Aborted sudden cardiac death (SCD) leading to the diagnosis of HCM occurred in one proband at the age of 68 years, and a family history of SCD was reported by 39% (5/13) probands. Neither heart failure deaths nor heart transplants were reported. Women had a generally later-onset disease, with 14% of female carriers diagnosed with HCM at age 50 years compared with 54% of male carriers. In both sexes, the disease was fully penetrant by age 75 years. Haplotypes were reconstructed for 35 patients and showed a founder effect in a subset of patients. CONCLUSION: MYH7 p.(Arg1712Gln) is a pathogenic founder variant with a consistent HCM phenotype that may present with delayed penetrance. This suggested that clinical follow-up should be pursued after the seventh decade in healthy carriers and that longer intervals between screening may be justified in healthy women < 30 years.

2.
Protein J ; 42(3): 148-149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198347
3.
ACS Appl Polym Mater ; 5(4): 2533-2541, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090423

ABSTRACT

The use of electrospun bipolar membranes (BPMs) with an interfacial three-dimensional (3D) junction of entangled nano-/microfibers has been recently proposed as a promising fabrication strategy to develop high-performance BPMs. In these BPMs, the morphology and physical properties of the 3D junction are of utmost importance to maximize the membrane performance. However, a full understanding of the impact of the junction thickness on the membrane performance is still lacking. In this study, we have developed bipolar membranes with the same composition, only varying the 3D junction thicknesses, by regulating the electrospinning time used to deposit the nano-/microfibers at the junction. In total, four BPMs with 3D junction thicknesses of ∼4, 8, 17, and 35 µm were produced to examine the influence of the junction thickness on the membrane performance. Current-voltage curves for water dissociation of BPMs exhibited lower voltages for BPMs with thicker 3D junctions, as a result of a three-dimensional increase in the interfacial contact area between cation- and anion-exchange fibers and thus a larger water dissociation reaction area. Indeed, increasing the BPM thickness from 4 to 35 µm lowered the BPM water dissociation overpotential by 32%, with a current efficiency toward HCl/NaOH generation higher than 90%. Finally, comparing BPM performance during the water association operation revealed a substantial reduction in the voltage from levels of its supplied open circuit voltage (OCV), owing to excessive hydroxide ion (OH-) and proton (H+) leakage through the relevant layers. Overall, this work provides insights into the role of the junction thickness on electrospun BPM performance as a crucial step toward the development of membranes with optimal entangled junctions.

4.
ACS Appl Energy Mater ; 4(4): 3724-3736, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34056554

ABSTRACT

With the use of bipolar membranes (BPMs) in an expanding range of applications, there is an urgent need to understand and improve the catalytic performance of BPMs for water dissociation, as well as to increase their physical and chemical stability. In this regard, electrospinning BPMs with 2D and 3D junction structures have been suggested as a promising route to produce high-performance BPMs. In this work, we investigate the effect of entangling anion and cation exchange nanofibers at the junction of bipolar membranes on the water dissociation rate. In particular, we compare the performance of different tailor-made BPMs with a laminated 2D junction and a 3D electrospun entangled junction, while using the same type of anion and cation exchange polymers in a single/dual continuous electrospinning manufacturing method. The bipolar membrane with a 3D entangled junction shows an enhanced water dissociation rate as compared to the bipolar membrane with laminated 2D junction, as measured by the decreased bipolar membrane potential. Moreover, we investigate the use of a third polymer, that is, poly(4-vinylpyrrolidine) (P4VP), as a catalyst for water dissociation. This polymer confirmed that a 3D entangled junction BPM (with incorporated P4VP) gives a higher water dissociation rate than does a 2D laminated junction BPM with P4VP as the water dissociation catalyst. This work demonstrates that the entanglement of the anion exchange polymer with P4VP as the water dissociation catalyst in a 3D junction is promising to develop bipolar membranes with enhanced performance as compared to the conventionally laminated membranes.

5.
iScience ; 24(2): 102095, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33659871

ABSTRACT

There is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.

6.
Membranes (Basel) ; 10(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321795

ABSTRACT

The increasing share of renewables in electric grids nowadays causes a growing daily and seasonal mismatch between electricity generation and demand. In this regard, novel energy storage systems need to be developed, to allow large-scale storage of the excess electricity during low-demand time, and its distribution during peak demand time. Acid-base flow battery (ABFB) is a novel and environmentally friendly technology based on the reversible water dissociation by bipolar membranes, and it stores electricity in the form of chemical energy in acid and base solutions. The technology has already been demonstrated at the laboratory scale, and the experimental testing of the first 1 kW pilot plant is currently ongoing. This work aims to describe the current development and the perspectives of the ABFB technology. In particular, we discuss the main technical challenges related to the development of battery components (membranes, electrolyte solutions, and stack design), as well as simulated scenarios, to demonstrate the technology at the kW-MW scale. Finally, we present an economic analysis for a first 100 kW commercial unit and suggest future directions for further technology scale-up and commercial deployment.

7.
Membranes (Basel) ; 10(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218012

ABSTRACT

Electrodialysis (ED) has been recently proposed to desalinate polymer-flooding produced water (PFPW), a byproduct stream from the oil and gas industry rich in charged polymers. However, process performance is limited by fouling occurring on the ion-exchange membranes, particularly on the anionic ones (AEMs). Thus, this study aimed to correlate the properties of different AEMs with their performance while desalinating PFPW, ultimately evaluating their significance when fouling is to be minimized and operation improved. Six stacks containing different homogeneous and commercially available AEMs were employed to desalinate synthetic PFPW during 8-days ED experiments operated in reversal mode. AEMs recovered from the stacks were analyzed in terms of water uptake, ion-exchange capacity, permselectivity, and area resistance, and compared with virgin AEMs. Relatively small changes were measured for most of the parameters evaluated. For most AEMs, the water uptake and resistance increased, while the ion-exchange capacity (IEC) and permselectivity decreased during operation. Ultimately, AEMs with high area resistance were linked to the fast development of limiting current conditions in the stack, so this property turned out to be the most relevant when desalinating PFPW.

8.
J Med Genet ; 57(1): 23-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31494578

ABSTRACT

BACKGROUND: Idiopathic dilated cardiomyopathy (DCM) is recognised to be a heritable disorder, yet clinical genetic testing does not produce a diagnosis in >50% of paediatric patients. Identifying a genetic cause is crucial because this knowledge can affect management options, cardiac surveillance in relatives and reproductive decision-making. In this study, we sought to identify the underlying genetic defect in a patient born to consanguineous parents with rapidly progressive DCM that led to death in early infancy. METHODS AND RESULTS: Exome sequencing revealed a potentially pathogenic, homozygous missense variant, c.542G>T, p.(Gly181Val), in SOD2. This gene encodes superoxide dismutase 2 (SOD2) or manganese-superoxide dismutase, a mitochondrial matrix protein that scavenges oxygen radicals produced by oxidation-reduction and electron transport reactions occurring in mitochondria via conversion of superoxide anion (O2-·) into H2O2. Measurement of hydroethidine oxidation showed a significant increase in O2-· levels in the patient's skin fibroblasts, as compared with controls, and this was paralleled by reduced catalytic activity of SOD2 in patient fibroblasts and muscle. Lentiviral complementation experiments demonstrated that mitochondrial SOD2 activity could be completely restored on transduction with wild type SOD2. CONCLUSION: Our results provide evidence that defective SOD2 may lead to toxic increases in the levels of damaging oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure and death. We propose SOD2 as a novel nuclear-encoded mitochondrial protein involved in severe human neonatal cardiomyopathy, thus expanding the wide range of genetic factors involved in paediatric cardiomyopathies.


Subject(s)
Cardiomyopathy, Dilated/genetics , Mutation, Missense , Myocardium/pathology , Superoxide Dismutase/genetics , Amino Acid Sequence , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/metabolism , Conserved Sequence , DNA Mutational Analysis , Female , Homozygote , Humans , Infant , Infant, Newborn , Mitochondria/metabolism , Myocardium/metabolism , Oxidative Stress , Pedigree , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxides/metabolism
9.
Mol Genet Genomic Med ; 7(10): e00943, 2019 10.
Article in English | MEDLINE | ID: mdl-31475485

ABSTRACT

BACKGROUND: Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD. METHODS: Co-segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation. RESULTS: The c.1043G>A TGFBR1 mutation was found in the index patient, in a deceased brother, and in five presymptomatic family members. Evidence for pathogenicity was found by the predicted damaging effect of this mutation and the co-segregation in the family. Functional analysis with myogenic transdifferentiation of dermal fibroblasts to smooth muscle-like cells, revealed increased myogenic differentiation in patient cells with the TGFBR1 mutation, shown by a higher expression of myogenic markers ACTA2, MYH11 and CNN1 compared to cells from healthy controls. CONCLUSION: Our findings confirm the pathogenic effect of the TGFBR1 mutation in causing TAAD in Loeys-Dietz syndrome and show increased myogenic differentiation of patient fibroblasts.


Subject(s)
Loeys-Dietz Syndrome/diagnosis , Receptor, Transforming Growth Factor-beta Type I/genetics , Actins/genetics , Actins/metabolism , Adult , Cell Transdifferentiation , Female , Fibroblasts/cytology , Humans , Loeys-Dietz Syndrome/genetics , Male , Middle Aged , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Pedigree , Polymorphism, Single Nucleotide
10.
Neuron ; 104(2): 305-321.e8, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31474508

ABSTRACT

The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.


Subject(s)
Ankyrins/metabolism , Axon Initial Segment/metabolism , Cell Adhesion Molecules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nerve Growth Factors/metabolism , Neurons/metabolism , Animals , Axon Initial Segment/ultrastructure , Axonal Transport , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Cytoskeleton , Endocytosis , Feedback, Physiological , HEK293 Cells , Hippocampus/cytology , Humans , Microtubules/ultrastructure , Neurons/ultrastructure , Rats , Tripartite Motif Proteins/metabolism
11.
J Neurosci ; 39(25): 4864-4873, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30967428

ABSTRACT

Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.


Subject(s)
Axon Fasciculation/physiology , Axon Initial Segment/metabolism , Microtubules/metabolism , Neurons/metabolism , Tripartite Motif Proteins/metabolism , Animals , Cell Polarity/physiology , Cells, Cultured , Cytoskeleton/metabolism , Female , Hippocampus/cytology , Hippocampus/metabolism , Male , Neurons/cytology , Rats , Tripartite Motif Proteins/genetics
12.
Water Res ; 154: 34-44, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30771705

ABSTRACT

The results of this sampling campaign on pilot scale processes aim to evaluate the occurrence and behavior of trace organic micro-pollutants and metal elements during anion exchange treatment of surface water and the subsequent treatment of generated spent brine with two types of electrodialysis membrane pairs. This knowledge is relevant to assess the quality and reusability of secondary products created during brine treatment; specifically the excess of sodium chloride to be recycled onsite and the natural organic matter, mostly consisting of humic substances, which find multiple applications in the agricultural industry. This study highlights that (1) the attachment mechanism of organic micro-pollutants to anion exchange resin occurs through electrostatic interaction and the subsequent transfer through ion exchange membranes is restricted by size exclusion; and (2) the complexation of trace metals compounds with the natural organic matter partly explains their removal by anion exchange. Complexes remain stable during treatment of the brine with electrodialysis.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Anions , Salts
13.
Int J Cardiol ; 258: 243-248, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29452988

ABSTRACT

BACKGROUND: Thoracic aortic aneurysm (TAA) is a potentially life-threatening disorder with a strong genetic component. The number of genes implicated in TAA has increased exponentially over the last decade. Approximately 20% of patients with TAA have a positive family history. As most TAA remain asymptomatic for a long time, screening of at risk relatives is warranted to prevent complications. Existing international guidelines lack detailed instructions regarding genetic evaluation and family screening of TAA patients. We aimed to develop a consensus document to provide medical guidance for all health care professionals involved in the recognition, diagnosis and treatment of patients with thoracic aortic disease and their relatives. METHODS: A multidisciplinary panel of experts including cardiologists, cardiothoracic surgeons, clinical geneticists and general practitioners, convened to review and discuss the current literature, guidelines and clinical practice on genetic testing and family screening in TAA. RESULTS: There is a lack of high-quality evidence in the literature. This consensus statement, based on the available literature and expert opinions, summarizes our recommendations in order to standardize and optimize the cardiogenetic care for patients and families with thoracic aortic disease. In particular, we provide criteria to identify those patients most likely to have a genetic predisposition, and discuss the preferred modality and frequency of screening in their relatives. CONCLUSIONS: Age, family history, aortic size and syndromic features determine who is advised to have genetic testing as well as screening of first-degree relatives. There is a need for more prospective multicenter studies to optimize current recommendations.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Consensus , Expert Testimony/standards , Family , Genetic Predisposition to Disease/genetics , Patient Care/standards , Aortic Aneurysm, Thoracic/epidemiology , Aortic Aneurysm, Thoracic/therapy , Expert Testimony/methods , Genetic Predisposition to Disease/epidemiology , Humans , Netherlands/epidemiology , Patient Care/methods
14.
Int J Cardiol ; 255: 55-58, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29329770

ABSTRACT

AIM: To determine the prevalence of unidentified bicuspid aortic valve (BAV) or aortic dilatation (>40mm) in first degree relatives (FDR) of patients with isolated BAV in a general hospital. METHODS AND RESULTS: Patients with isolated BAV received information advising cardiac screening of their FDR. Referred and screened were 134 FDR of 54 adult index patients with isolated BAV (median 2 per index patient). FDR's mean age was 49years (range 16-83years) and 41% were male. They comprised 5 parents (3.7%), 52 siblings (39%) and 77 offspring (57%). Among these FDR, the prevalence of BAV was 6.0% (8 patients). In FDR without BAV, 10 (7.5%) had aortic dilatation. 'Familial BAV' was present in 9/54 families (17%). CONCLUSION: In a general hospital, screening of FDR of patients with isolated BAV resulted in a substantial yield of 13% new cases with BAV or aortic dilatation without BAV.


Subject(s)
Aortic Valve/abnormalities , Family , Heart Valve Diseases/diagnostic imaging , Hospitals, General/methods , Mass Screening/methods , Adolescent , Adult , Aged , Aged, 80 and over , Aortic Valve/diagnostic imaging , Bicuspid Aortic Valve Disease , Female , Heart Valve Diseases/epidemiology , Heart Valve Diseases/genetics , Humans , Male , Middle Aged , Young Adult
15.
Neurosurgery ; 82(4): 431-440, 2018 04 01.
Article in English | MEDLINE | ID: mdl-28498930

ABSTRACT

BACKGROUND: Intracranial aneurysm rupture prediction is poor, with only a few risk factors for rupture identified and used in clinical practice. OBJECTIVE: To provide an overview of all the risk factors (including genetic, molecular, morphological, and hemodynamic factors) that have potential for use in clinical practice. METHODS: We systematically searched PubMed and EMBASE and focused on factors that can be easily assessed in clinical practice, might be used for rupture prediction in clinical practice, and/or are potential targets for further research. Studies were categorized according to methodological quality, and a meta-analysis was performed, if possible. RESULTS: We included 102 studies describing 144 risk factors that fulfilled predefined criteria. There was strong evidence for the morphological factors irregular shape (studied in 4 prospective cohort studies of high-quality, pooled odds ratio [OR] of 4.8 [95% confidence interval 2.7-8.7]), aspect ratio (pooled OR 10.2 [4.3-24.6]), size ratio, bottleneck factor, and height-to-width ratio to increase rupture risk. Moderate level of evidence was found for presence of contact with the perianeurysmal environment (pooled OR 3.5 [1.4-8.4]), unbalanced nature of this contact (pooled OR 17.8 [8.3-38.5]), volume-to-ostium ratio, and direction of the aneurysm dome (pooled OR 1.5 [1.2-1.9]). CONCLUSION: Irregular aneurysm shape was identified as a risk factor with potential for use in clinical practice. The risk factors aspect ratio, size ratio, bottleneck factor, height-to-width ratio, contact with the perianeurysmal environment, volume-to-ostium ratio, and dome-direction should first be confirmed in multivariate analysis and incorporated in prediction models.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Female , Humans , Male , Multivariate Analysis , Prospective Studies , Risk Factors
16.
J Neuropathol Exp Neurol ; 76(10): 908-916, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28922850

ABSTRACT

Insight into processes leading to rupture of intracranial aneurysms (IAs) may identify biomarkers for rupture or lead to management strategies reducing the risk of rupture. We characterized and quantified (ultra)structural differences between unruptured and ruptured aneurysmal walls. Six unruptured and 6 ruptured IA fundi were resected after microsurgical clipping and analyzed by correlative light microscopy for quantitative analysis (proportion of the vessel wall area) and transmission electron microscopy for qualitative ultrastructural analysis. Quantitative analysis revealed extensive internal elastic lamina (IEL) thickening in ruptured IA (36.3% ± 15%), while thin and fragmented IEL were common in unruptured IA (5.6% ± 7.1%). Macrophages were increased in ruptured IA (28.3 ± 24%) versus unruptured IA (2.7% ± 5.5%), as were leukocytes (12.85% ± 10% vs 0%). Vasa vasorum in ruptured but not in unruptured IA contained vast numbers of inflammatory cells and extravasation of these cells into the vessel wall. In conclusion, detection of thickened IEL, leaky vasa vasorum, and heavy inflammation as seen in ruptured IA in comparison to unruptured IA may identify aneurysms at risk of rupture, and management strategies preventing development of vasa vasorum or inflammation may reduce the risk of aneurysmal rupture.


Subject(s)
Aneurysm, Ruptured/pathology , Blood Vessels/pathology , Blood Vessels/ultrastructure , Intracranial Aneurysm/pathology , Stereotaxic Techniques , Adult , Aged , Endothelium/pathology , Endothelium/ultrastructure , Female , Humans , Male , Microscopy, Electron, Transmission , Middle Aged , Muscle, Smooth/pathology , Muscle, Smooth/ultrastructure , Plasma Cells/pathology , Plasma Cells/ultrastructure , Young Adult
17.
Phytother Res ; 30(12): 1988-2000, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27561686

ABSTRACT

Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects of cinnamaldehyde, carvacrol and cinnamic, lactic and propionic acids on the ability of Salmonella typhimurium ATCC 14028 (ST) to invade intestinal epithelial cells (IPEC-J2) and on the expression levels of immune related genes in the cells. The minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) were determined and influence on the invasion capacity of ST was investigated. The structure of fimbriae and flagella was analysed by electron microscopy, and expression levels of HSP70, IkBa, IL-8 and IL-10 in the IPEC-J2 cells were carried out by q-PCR. Cinnamaldehyde, carvacrol and cinnamic and propionic acids inhibited ST invasion but not cell viability, bacterial viability and motility or the development of flagella. Propionic acid and cinnamaldehyde in combination with cinnamic acid caused structural impairment of fimbriae. Cinnamaldehyde up-regulated expression of HSP70 irrespective of the presence of organic acids or ST; exposure to carvacrol induced HSP70 only in the presence of propionic acid and ST. © 2016 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.


Subject(s)
Acrolein/analogs & derivatives , Epithelial Cells/virology , Monoterpenes/chemistry , Salmonella typhimurium/drug effects , Acrolein/chemistry , Animals , Cymenes , Gene Expression , Inflammation , Oxidative Stress
18.
Stroke ; 47(5): 1286-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27026628

ABSTRACT

BACKGROUND AND PURPOSE: Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. METHODS: We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. RESULTS: We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. CONCLUSIONS: For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture.


Subject(s)
Aneurysm, Ruptured/genetics , Extracellular Matrix/genetics , Gene Expression Profiling/methods , Immunoglobulins/genetics , Intracranial Aneurysm/genetics , Lysosomes/genetics , Sequence Analysis, RNA/methods , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged
19.
Muscle Nerve ; 53(1): 44-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25900853

ABSTRACT

INTRODUCTION: The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. METHODS: All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. RESULTS: In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. CONCLUSIONS: Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients.


Subject(s)
DNA Mutational Analysis , Dystrophin/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Mutation/genetics , Anoctamins , Chloride Channels/genetics , Female , Humans , Male , Retrospective Studies
20.
Neuron ; 88(6): 1208-1226, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26671463

ABSTRACT

Axon formation, the initial step in establishing neuronal polarity, critically depends on local microtubule reorganization and is characterized by the formation of parallel microtubule bundles. How uniform microtubule polarity is achieved during axonal development remains an outstanding question. Here, we show that the tripartite motif containing (TRIM) protein TRIM46 plays an instructive role in the initial polarization of neuronal cells. TRIM46 is specifically localized to the newly specified axon and, at later stages, partly overlaps with the axon initial segment (AIS). TRIM46 specifically forms closely spaced parallel microtubule bundles oriented with their plus-end out. Without TRIM46, all neurites have a dendrite-like mixed microtubule organization resulting in Tau missorting and altered cargo trafficking. By forming uniform microtubule bundles in the axon, TRIM46 is required for neuronal polarity and axon specification in vitro and in vivo. Thus, TRIM46 defines a unique axonal cytoskeletal compartment for regulating microtubule organization during neuronal development.


Subject(s)
Axons/physiology , Axons/ultrastructure , Cell Polarity/physiology , Microtubules/physiology , Microtubules/ultrastructure , Nerve Tissue Proteins/physiology , Nerve Tissue Proteins/ultrastructure , Amino Acid Sequence , Animals , COS Cells , Cells, Cultured , Cerebral Cortex/embryology , Cerebral Cortex/physiology , Cerebral Cortex/ultrastructure , Chlorocebus aethiops , Female , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Neurons/physiology , Neurons/ultrastructure , Pregnancy , Rats , Repressor Proteins/physiology , Repressor Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...