Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513697

ABSTRACT

In the successful transition towards a circular materials economy, the implementation of biobased and biodegradable plastics is a major prerequisite. To prevent the accumulation of plastic material in the open environment, plastic products should be both recyclable and biodegradable. Research and development actions in the past few decades have led to the commercial availability of a number of polymers that fulfil both end-of-life routes. However, these biobased and biodegradable polymers typically have mechanical properties that are not on par with the non-biodegradable plastic products they intend to replace. This can be improved using particulate mineral fillers such as talc, calcium carbonate, kaolin, and mica. This study shows that composites thereof with polybutylene succinate (PBS), polyhydroxybutyrate-hexanoate (PHBH), polybutylene succinate adipate (PBSA), and polybutylene adipate terephthalate (PBAT) as matrix polymers result in plastic materials with mechanical properties ranging from tough elastic towards strong and rigid. It is demonstrated that the balance between the Young's modulus and the impact resistance for this set of polymer composites is subtle, but a select number of investigated compositions yield a combination of industrially relevant mechanical characteristics. Finally, it is shown that the inclusion of mineral fillers into biodegradable polymers does not negate the microbial disintegration of these polymers, although the nature of the filler does affect the biodegradation rate of the matrix polymer.

2.
Polymers (Basel) ; 8(12)2016 Dec 15.
Article in English | MEDLINE | ID: mdl-30974713

ABSTRACT

This work reports on the healing of early stage fatigue damage in ionomer/nano-particulate composites. A series of poly(ethylene-co-methacrylic acid) zinc ionomer/Fe3O4 nanoparticle composites with varying amounts of ionic clusters were developed and subjected to different levels of fatigue loading. The initiated damage was healed upon localized inductive heating of the embedded nanoparticles by exposure of the particulate composite to an alternating magnetic field. It is here demonstrated that healing of this early stage damage in ionomer particulate composites occurs in two different steps. First, the deformation is restored by the free-shrinkage of the polymer at temperatures below the melt temperature. At these temperatures, the polymer network is recovered thereby resetting the fatigue induced strain hardening. Then, at temperatures above the melting point of the polymer phase, fatigue-induced microcracks are sealed, hereby preventing crack propagation upon further loading. It is shown that the thermally induced free-shrinkage of these polymers does not depend on the presence of ionic clusters, but that the ability to heal cracks by localized melting while maintaining sufficient mechanical integrity is reserved for ionomers that contain a sufficient amount of ionic clusters guaranteeing an acceptable level of mechanical stability during healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...