Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 149(19): 194107, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30466263

ABSTRACT

We present a procedure for simulating epitaxial growth based on the phase-field method. We consider a basic model in which growth is initiated by a flux of atoms onto a heated surface. The deposited atoms diffuse in the presence of this flux and eventually collide to form islands which grow and decay by the attachment and detachment of migrating atoms at their edges. Our implementation of the phase-field method for this model includes uniform deposition, isotropic surface diffusion, and stochastic nucleation (in both space and time), which creates islands whose boundaries evolve as the surface atoms "condense" into and "evaporate" from the islands. Computations using this model in the submonolayer regime, prior to any appreciable coalescence of islands, agree with the results of kinetic Monte Carlo (KMC) simulations for the coverage-dependence of adatom and island densities and island-size distributions, for both reversible and irreversible growth. The scaling of the island density, as obtained from homogeneous rate equations, agrees with KMC simulations for irreversible growth and for reversible growth for varying deposition flux at constant temperature. For reversible growth with varying temperature but constant flux, agreement relies on an estimate of the formation energy of the critical cluster. Taken together, our results provide a comprehensive analysis of the phase-field method in the submonolayer regime of epitaxial growth, including the verification of the main scaling laws for adatoms and island densities and the scaling functions for island-size distributions, and point to the areas where the method can be extended and improved.

2.
Phys Chem Chem Phys ; 18(40): 27897-27909, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27711652

ABSTRACT

The complete mechanism behind the thermal decomposition of ethylene (C2H4) on Ir(111), which is the first step of graphene growth, is established for the first time employing a combination of experimental and theoretical methods. High-resolution X-ray photoelectron spectroscopy was employed, along with calculations of core level binding-energies, to identify the surface species and their evolution as the surface temperature is increased. To understand the experimental results, we have developed a reaction sequence between the various CnHm species, from ethylene to C monomers and dimers, based on ab initio density functional calculations of all the energy barriers and the Arrhenius prefactors for the most important processes. The resulting temperature evolution of all species obtained from the simulated kinetics of ethylene decomposition agrees with photoemission measurements. The molecular dissociation mechanism begins with the dehydrogenation of ethylene to vinylidene (CH2C), which is then converted to acetylene (CHCH) by the removal and addition of an H atom. The C-C bond is then broken to form methylidyne (CH), and in the same temperature range a small amount of ethylidyne (CH3C) is produced. Finally methylidyne dehydrogenates to produce C monomers that are available for the early stage nucleation of the graphene islands.

SELECTION OF CITATIONS
SEARCH DETAIL
...