Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081243

ABSTRACT

Dispersion forces start to play role in modern micro/nanoelectromechanical devices, but the methods to measure these forces at distances close to contact (<50 nm) suffer from pull-in instability. The method of adhered cantilever proposed recently has no instability and is able to make measurements at short separations. To measure the force at the average distance between surfaces in contact, one has to know the shape of an elastic beam with one end fixed at a height of 1-10 µm and the other end adhered to the substrate. The maximum contribution to this shape from the dispersion forces is in a range of 30-100 nm, which is well measurable by the interferometric methods. This paper describes the instrument, measurements, and data processing that make possible the reconstruction of the beam shape with an accuracy of 1 nm in a height range of at least 5000 nm. Critical steps of the fabrication procedure of cantilevers that are 12 mm long, 200 µm wide, and 10 µm thick are described. The interferometer measures the shape based on the differential interference-contrast method; the scanning is realized by a stage with a step of 0.1 µm. The signal recorded from the adhered cantilever has a noise level of 0.33 nm at a maximum sensitivity in a frequency band of 20 MHz. It is concluded that the instrument and data processing algorithm can be used to measure the dispersion forces and adhesion energies between rough surfaces in unloaded contact.

2.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176126

ABSTRACT

The insulin-like growth factors IGF-I and IGF-II-as well as their binding proteins (IGFBPs), which regulate their bioavailability-are involved in many pathological and physiological processes in cardiac tissue. Pregnancy-associated plasma protein A (PAPP-A) is a metalloprotease that preferentially cleaves IGFBP-4, releasing IGF and activating its biological activity. Previous studies have shown that PAPP-A-specific IGFBP-4 proteolysis is involved in the pathogenesis of cardiovascular diseases, such as ischemia, heart failure, and acute coronary syndrome. However, it remains unclear whether PAPP-A-specific IGFBP-4 proteolysis participates in human normal cardiomyocytes. Here, we report PAPP-A-specific IGFBP-4 proteolysis occurring in human cardiomyocytes derived from two independent induced pluripotent cell lines (hiPSC-CMs), detected both on the cell surface and in the cell secretome. PAPP-A was measured by fluoroimmune analysis (FIA) in a conditioned medium of hiPSC-CMs and was detected in concentrations of up to 4.3 ± 1.33 ng/mL and 3.8 ± 1.1 ng/mL. The level of PAPP-A-specific IGFBP-4 proteolysis was determined as the concentration of NT-IGFBP-4 proteolytic fragments using FIA for a proteolytic neo-epitope-specific assay. We showed that PAPP-A-specific IGFBP-4 proteolysis is IGF-dependent and inhibited by EDTA and 1,10-phenanthroline. Therefore, it may be concluded that PAPP-A-specific IGFBP-4 proteolysis functions in human normal cardiomyocytes, and hiPSC-CMs contain membrane-bound and secreted forms of proteolytically active PAPP-A.


Subject(s)
Induced Pluripotent Stem Cells , Pregnancy-Associated Plasma Protein-A , Humans , Pregnancy-Associated Plasma Protein-A/metabolism , Proteolysis , Induced Pluripotent Stem Cells/metabolism , Insulin-Like Growth Factor Binding Protein 4/metabolism , Myocytes, Cardiac/metabolism
3.
Biochemistry (Mosc) ; 86(11): 1395-1406, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34906040

ABSTRACT

Cardiovascular diseases (CVD) are among the leading causes of death and disability worldwide. Pregnancy-associated plasma protein-A (PAPP-A) is a matrix metalloprotease localized on the cell surface. One of the substrates that PAPP-A cleaves is the insulin-like growth factor binding protein-4 (IGFBP-4), a member of the family of proteins that bind insulin-like growth factor (IGF). Proteolysis of IGFBP-4 by PAPP-A occurs at a specific site resulting in formation of two proteolytic fragments - N-terminal IGFBP-4 (NT-IGFBP-4) and C-terminal IGFBP-4 (CT-IGFBP-4), and leads to the release of IGF activating various cellular processes including migration, proliferation, and cell growth. Increased levels of the proteolytic IGFBP-4 fragments correlate with the development of CVD complications and increased risk of death in patients with the coronary heart disease, acute coronary syndrome, and heart failure. However, there is no direct evidence that PAPP-A specifically cleaves IGFBP-4 in the cardiac tissue under normal and pathological conditions. In the present study, using a primary culture of rat neonatal cardiomyocytes as a model, we have demonstrated that: 1) proteolysis of IGFBP-4 by PAPP-A occurs in the conditioned medium of cardiomyocytes, 2) PAPP-A-specific IGFBP-4 proteolysis is increased when cardiomyocytes are transformed to a hypertrophic state. Thus, it can be assumed that the enhancement of IGFBP-4 cleavage by PAPP-A and hypertrophic changes in cardiomyocytes accompanying CVD are interrelated, and PAPP-A appears to be one of the activators of the IGF-dependent processes in normal and hypertrophic-state cardiomyocytes.


Subject(s)
Cardiomegaly/enzymology , Insulin-Like Growth Factor Binding Protein 4/metabolism , Myocytes, Cardiac/enzymology , Pregnancy-Associated Plasma Protein-A/metabolism , Proteolysis , Animals , Animals, Newborn , Cardiomegaly/pathology , Cells, Cultured , Myocytes, Cardiac/pathology , Rats
4.
J Colloid Interface Sci ; 582(Pt A): 167-176, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32818712

ABSTRACT

Hypothesis Water electrolysis performed by short (≲5µs) voltage pulses of alternating polarity generates a dense cloud of H2 and O2 nanobubbles. Platinum electrodes turn black in this process, while they behave differently when the polarity is not altered. We prove that the modification of Pt is associated with highly energetic impact of nanobubbles rather than with any electrochemical process. Experiments Nanobubbles are generated by planar Pt or Ti microelectrodes. The process is driven by a series of alternating or single polarity pulses. In the case of Ti electrodes a Pt plate is separated by a gap from the electrodes. Nanoparticles on the surface of platinum are investigated with a scanning electron microscope and elemental composition is analysed using an energy-dispersive X-ray spectrometer. Findings Vigorous formation of Pt nanoparticles with a size of 10 nm is observed when the process is driven by the alternating polarity pulses. The effects of Pt corrosion have different character and cannot explain the phenomenon. Similar nanoparticles are observed when the Pt plate is exposed to a stream of nanobubbles. The process is explained by spontaneous combustion of hydrogen and oxygen nanobubbles on Pt surface. The phenomenon can be used to remove strongly adhered particles from solids.

5.
ESC Heart Fail ; 7(2): 434-444, 2020 04.
Article in English | MEDLINE | ID: mdl-31967738

ABSTRACT

AIMS: Insulin-like growth factor binding protein-4 (IGFBP-4) fragments have been shown to predict the risk of major adverse cardiovascular events, including segment-elevation myocardial infarction, in patients with acute coronary syndrome. We evaluated the prognostic value of the carboxy-terminal fragment of IGFBP-4 (CT-IGFBP-4) for all-cause mortality in emergency room patients with acute heart failure (AHF). METHODS AND RESULTS: CT-IGFBP-4, N-terminal pro brain natriuretic peptide (NT-proBNP), and C-reactive protein (CRP) were measured at admission from the lithium-heparin plasma of 156 patients with AHF. All-cause mortality was recorded for 1 year. Receiver operator characteristic (ROC) curves, Kaplan-Meier, and Cox proportional hazard ratio analyses were performed to evaluate the prognostic value of the various clinical variables, CT-IGFBP-4, NT-proBNP, CRP, and their combinations. During 1 year of follow-up, 52 (33.3%) patients died. CT-IGFBP-4 only weakly correlated with NT-proBNP (Pearson correlation coefficient r = 0.16, P = 0.044) and did not correlate with CRP (r = 0.08, P = 0.35), emphasizing the different nature of these biomarkers. The receiver operator characteristic area under the curve (ROC AUC) of CT-IGFBP-4 for the prediction of all-cause mortality (0.727) was significantly higher than that of NT-proBNP (0.680, P = 0.045) and CRP (0.669, P = 0.016). The combination of CT-IGFBP-4, NT-proBNP, and CRP predicted mortality significantly better (ROC AUC = 0.788) than any of the biomarkers alone (P < 0.01 for all). The addition of CT-IGFBP-4 to a clinical prediction model that included age, gender, systolic blood pressure, creatinine, and sodium levels, as well as the history of previous heart failure, coronary artery disease, and hypertension significantly improved the mortality risk prediction (ROC AUC 0.774 vs. 0.699, P = 0.025). Cox hazard analysis indicated that elevated CT-IGFBP-4 was independently associated with 1 year mortality (hazard ratio 3.26, P = 0.0008) after adjustment for age, gender, history of previous heart failure, coronary artery disease, hypertension, chronic kidney failure, history of diabetes, heart rate, haemoglobin, plasma sodium, NT-proBNP, CRP, cystatin C, and elevated cardiac troponin I or T. Patients with increased levels of either two or three of the biomarkers CT-IGFBP-4, NT-proBNP, and CRP had significantly higher mortality risk (adjusted hazard ratio 10.04, P < 0.0001) than patients with increased levels of one or none of the biomarkers. CONCLUSIONS: CT-IGFBP-4 was independently associated with all-cause mortality in patients with AHF. Compared with single biomarkers, the combination of CT-IGFBP-4, NT-proBNP, and CRP improved the prediction of all-cause mortality in patients with AHF.


Subject(s)
Heart Failure , Insulin-Like Growth Factor Binding Protein 4 , Biomarkers , Heart Failure/diagnosis , Humans , Models, Statistical , Peptide Fragments , Prognosis , Risk Assessment , Tomography, X-Ray Computed
6.
Clin Chem ; 65(10): 1239-1247, 2019 10.
Article in English | MEDLINE | ID: mdl-31307994

ABSTRACT

BACKGROUND: Entresto™ is a new heart failure (HF) therapy that includes the neprilysin (NEP) inhibitor sacubitril. One of the NEP substrates is B-type natriuretic peptide (BNP); its augmentation by NEP inhibition is considered as a possible mechanism for the positive effects of Entresto. We hypothesized that the circulating products of BNP proteolysis by NEP might reflect NEP impact on the metabolism of active BNP. We suggest that NEP-based BNP cleavage at position 17-18 results in BNP ring opening and formation of a novel epitope with C-terminal Arg-17 (BNP-neo17 form). In this study, we use a specific immunoassay to explore BNP-neo17 in a rat model and HF patient plasma. METHODS: We injected BNP into rats, with or without NEP inhibition with sacubitril. BNP-neo17 in plasma samples at different time points was measured with a specific immunoassay with neglectable cross-reactivity to intact forms. BNP-neo17 and total BNP were measured in EDTA plasma samples of HF patients. RESULTS: BNP-neo17 generation in rat circulation was prevented by NEP inhibition. The maximum 13.2-fold difference in BNP-neo17 concentrations with and without sacubitril was observed at 2 min after injection. BNP-neo17 concentrations in 32 HF patient EDTA plasma samples ranged from 0 to 37 pg/mL (median, 5.4; interquartile range, 0-9.1). BNP-neo17/total BNP had no correlation with total BNP concentration (with r = -0.175, P = 0.680) and showed variability among individuals. CONCLUSIONS: BNP-neo17 formation is NEP dependent. Considering that BNP-neo17 is generated from the active form of BNP by NEP, we speculate that BNP-neo17 may reflect both the NEP activity and natriuretic potential and serve for HF therapy guidance.


Subject(s)
Heart Failure/blood , Immunoassay/methods , Natriuretic Peptide, Brain/metabolism , Neprilysin/metabolism , Aged , Aged, 80 and over , Aminobutyrates/pharmacology , Animals , Biphenyl Compounds , Cross Reactions , Drug Combinations , Epitopes/metabolism , Heart Failure/drug therapy , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/immunology , Natriuretic Peptide, Brain/pharmacokinetics , Neprilysin/antagonists & inhibitors , Peptide Fragments , Rats, Wistar , Tetrazoles/pharmacology , Valsartan
7.
Clin Biochem ; 55: 56-62, 2018 May.
Article in English | MEDLINE | ID: mdl-29526675

ABSTRACT

BACKGROUND: N-terminal and C-terminal proteolytic fragments of IGF binding protein 4 (NT-IGFBP-4 and CT-IGFBP-4) were recently shown to predict adverse cardiac events in acute coronary syndrome (ACS) patients. NT-IGFBP-4 and CT-IGFBP-4 are products of the pregnancy-associated plasma protein-A (PAPP-A)-mediated cleavage of IGFBP-4. It has been demonstrated that circulating IGFBP-4 is partially glycosylated in its N-terminal region, although the influence of this glycosylation on PAPP-A-mediated proteolysis and the ratio of glycosylated/non-glycosylated IGFBP-4 fragments in human blood remain unrevealed. The aims of this study were to investigate i) the presence of glycosylated NT-IGFBP-4 in the circulation, ii) the influence of the glycosylation of IGFBP-4 on its susceptibility to PAPP-A-mediated cleavage, and iii) the influence of glycosylation on NT-IGFBP-4 immunodetection. METHODS: Affinity purification was used for the extraction of IGFBP-4 and NT-IGFBP-4 from plasma samples. Purified proteins were quantified by Western blotting and specific sandwich immunoassays, while molecular masses were determined using mass spectrometry. RESULTS: Glycosylated NT-IGFBP-4 was identified in the blood of ACS patients. The fraction of glycosylated NT-IGFBP-4 in individual plasma samples was 9.8%-23.5% of the total levels of NT-IGFBP-4. PAPP-A-mediated proteolysis of glycosylated IGFBP-4 was 3-4 times less efficient (p < 0.001) than proteolysis of non-glycosylated protein. A sandwich fluoroimmunoassay that was designed for quantitative NT-IGFBP-4 measurements recognized both protein forms with the same efficiency. CONCLUSIONS: Although glycosylation suppresses PAPP-A-mediated IGFBP-4 cleavage, a considerable amount of glycosylated NT-IGFBP-4 is present in blood. Glycosylation does not influence NT-IGFBP-4 measurements using a specific sandwich immunoassay.


Subject(s)
Acute Coronary Syndrome/blood , Insulin-Like Growth Factor Binding Protein 4/blood , Female , Fluoroimmunoassay/methods , Glycosylation , Humans , Male , Protein Domains
8.
Nanoscale ; 10(1): 428-435, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29226935

ABSTRACT

Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 1018 m-3. This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.

9.
PLoS One ; 12(7): e0181727, 2017.
Article in English | MEDLINE | ID: mdl-28727812

ABSTRACT

Using different experimental techniques we visualize a cloud of gas in water that is produced electrochemically by the alternating polarity process. Liquid enriched with gas does not contain bubbles strongly scattering visible light but its refractive index changes significantly near the electrodes. The change of the refractive index is a collective effect of bulk nanobubbles with a diameter smaller than 200 nm. Any alternative explanation fails to explain the magnitude of the effect. Spatial structure of the cloud is investigated with the optical lever method. Its dynamics is visualised observing optical distortion of the electrode images or using differential interference contrast method. The cloud covers concentric electrodes, in a steady state it is roughly hemispherical with a size two times larger than the size of the electrode structure. When the electrical pulses are switched off the cloud disappears in less than one second. The total concentration of gases can reach very high value estimated as 3.5 × 1020 cm-3 that corresponds to an effective supersaturation of 500 and 150 for hydrogen and oxygen, respectively.


Subject(s)
Electricity , Gases , Microbubbles , Water , Electrodes , Gases/chemistry , Hydrogen/chemistry , Optical Phenomena , Oxygen/chemistry , Refractometry , Vibration , Water/chemistry
10.
Clin Biochem ; 48(12): 774-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26025773

ABSTRACT

BACKGROUND: Recent findings show that circulating N- and C-terminal fragments of IGF-binding protein-4 (NT-IGFBP-4 and CT-IGFBP-4) can be utilized as biomarkers for cardiac risk assessment in acute coronary syndrome (ACS) patients. The fragments are thought to be the products of pregnancy-associated plasma protein A (PAPP-A)-dependent proteolysis. Two immunoassays for the measurement of IGFBP-4 fragments have been proposed. However, properties of the endogenous IGFBP-4 fragments that could influence the performance of the immunoassays were still not investigated. METHODS: NT- and CT-IGFBP-4 were extracted from pooled ACS plasma using affinity purification, and their concentrations were measured using sandwich immunoassays utilizing antibodies specific to their proteolytic neo-epitopes or internal epitopes. The extracted fragments were characterized by Western blots (WB) and mass-spectrometry. ACS plasma samples were analyzed by size exclusion chromatography (SEC). RESULTS: Immunoassays utilizing the neo-epitope-specific and the internal epitope-specific antibodies measured equal concentrations of the analyte in the endogenous IGFBP-4 fragments preparations. Only the 18 kDa NT-IGFBP-4 and 14 kDa CT-IGFBP-4 were detected in the WB analysis. Using mass-spectrometry, peaks corresponding to intact non-truncated and non-modified NT-IGFBP-4 (14626 Da) and CT-IGFBP-4 (11346 Da) were observed. The absence of complexed forms of IGFBP-4 in patients' plasma was demonstrated using SEC. CONCLUSIONS: Endogenous NT- and CT-IGFBP-4 from ACS patients' plasma correspond to the PAPP-A-derived IGFBP-4 fragments and do not undergo any truncation, modification, or complex formation in the patients' blood. Because of the demonstrated intact state of the circulating IGFBP-4 fragments, the neo-epitope-specific immunoassays perform reliably, allowing further clinical validation of these novel biomarkers.


Subject(s)
Cardiovascular Diseases/blood , Insulin-Like Growth Factor Binding Protein 4/blood , Aged , Aged, 80 and over , Biomarkers/blood , Female , Humans , Immunoassay/methods , Male , Middle Aged , Peptide Fragments/blood , Pregnancy-Associated Plasma Protein-A/metabolism , Risk Assessment , Risk Factors
11.
Clin Biochem ; 47(3): 177-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24201068

ABSTRACT

OBJECTIVES: We have previously reported that increases in total pregnancy-associated plasma protein-A (PAPP-A) which are thought to be indicative of vulnerable plaques and thus poor outcomes predict outcomes in patients with stable coronary artery disease. We hypothesized that the determination of CT- and NT-fragments of insulin-like growth factor binding protein 4 (CT- and NT-IGFBP4) which should be indicative of free PAPP-A would result in better performance. METHODS: In 229 stable cardiovascular patients with indication for heart catheterization after performance of a stress test and an echocardiogram, CT- and NT-IGFBP4 were measured. Their values were investigated in relation to clinical characteristics, findings of noninvasive investigations, laboratory data and coronary angiography as well as to outcomes after a follow-up of 1094±307days. RESULTS: CT-IGFBP4 values were independently predicted by patients with B-type (p=0.0069) or complex coronary lesions (p=0.0445). B-type and vulnerable coronary lesions were independently predicted by levels of CT-IGFBP4≥a cutoff of 31.55ng/mL derived from ROC analysis (p=0.0090 and 0.0480). NT-IGFBP4 was not predictive of coronary characteristics. Both IGFBP4 fragments were strongly dependent on age and renal function and were not predictive of outcomes. CONCLUSION: Despite the relation of CT-IGFBP4 to a more severe coronary artery disease, CT- and NT-IGFBP4, in contrast to our report based on total PAPP-A, failed to predict any long-term outcomes in patients with stable cardiovascular disease. Further knowledge about the interaction of the PAPP-A-insulin-like growth factor system is needed to explain values of IGFBP4 fragments in these patients.


Subject(s)
Coronary Artery Disease/blood , Insulin-Like Growth Factor Binding Protein 4/blood , Pregnancy-Associated Plasma Protein-A/metabolism , Aged , Aged, 80 and over , Coronary Artery Disease/diagnostic imaging , Echocardiography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Predictive Value of Tests
12.
Scand J Clin Lab Invest ; 71(8): 676-82, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22017167

ABSTRACT

OBJECTIVE: To establish a high-throughput system for testing the ability of drugs or monoclonal antibodies to reduce the in vitro formation of cystatin C dimers to identify substances potentially useful for treatment of patients with hereditary cystatin C amyloid angiopathy (HCCAA). METHODS: Various combinations of incubation temperature, time period, guanidinium chloride concentration and concentration of cystatin C monomers were tested in low-volume formats to induce dimer formation of recombinant cystatin C. The extent of dimerization was analysed by gel filtration chromatography and agarose gel electrophoresis. RESULTS: A high-throughput system based upon agarose gel electrophoresis was developed and used to test 1040 drugs in a clinical drug library for their capacity to reduce cystatin C dimer formation in vitro. Seventeen substances reducing dimer formation by more than 30% were identified. A similar system for testing the capacity of monoclonal antibodies against cystatin C to reduce the in vitro formation of cystatin C dimers was also developed and used to test a panel of 12 monoclonal antibodies. Seven antibodies reducing dimer formation by more than 30% were identified and the two most potent, Cyst28 and HCC3, reduced dimerization by 75 and 60%, respectively. CONCLUSION: We constructed a simple high-throughput system for testing the capacity of drugs and monoclonal antibodies to reduce the in vitro formation of cystatin C dimers and several candidates for treatment of HCCAA could be identified.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cerebral Amyloid Angiopathy/metabolism , Cerebral Arteries/metabolism , Cystatin C/antagonists & inhibitors , Drug Discovery/methods , High-Throughput Screening Assays , Recombinant Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Cerebral Amyloid Angiopathy/congenital , Cerebral Amyloid Angiopathy/drug therapy , Cerebral Amyloid Angiopathy/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/physiopathology , Chromatography, Gel , Cystatin C/metabolism , Dimerization , Electrophoresis, Agar Gel , Guanidine/adverse effects , Humans , Recombinant Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Solutions
13.
Clin Chem ; 57(6): 883-90, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21474642

ABSTRACT

BACKGROUND: The appearance of B-type natriuretic peptide (BNP) in the blood is ultimately caused by proteolytic processing of its precursor, proBNP. The mechanisms leading to the high plasma concentration of unprocessed proBNP are still poorly understood. The goals of the present study were to examine whether processing of proBNP takes place in the circulation and to evaluate the clearance rate of proBNP and proBNP-derived peptides. METHODS: We studied the processing of human proBNP in the circulation and the clearance rate of proBNP and proBNP-derived peptides (BNP and N-terminal fragment of proBNP, NT-proBNP) in rats by injecting the corresponding peptides and analyzing immunoreactivity at specific time points. Glycosylated and nonglycosylated proBNP and NT-proBNP were used in the experiments. We applied immunoassays, gel filtration, and mass spectrometry (MS) techniques to analyze the circulation-mediated processing of proBNP. RESULTS: ProBNP was effectively processed in the circulation into BNP (1-32) and various truncated BNP forms as confirmed by gel filtration and MS analysis. Glycosylation of proBNP close to the cleavage-site region suppressed its processing in the circulation. The terminal half-life for human glycosylated proBNP was 9.0 (0.5) min compared with 6.4 (0.5) min for BNP. For NT-proBNP, the terminal half-lives were 15.7 (1.4) min and 15.5 (1.3) min for glycosylated and nonglycosylated forms, respectively. CONCLUSIONS: In rats, processing of human proBNP to active BNP occurs in the circulation. The clearance rate of proBNP is quite similar to that of BNP. These observations suggest that peripheral proBNP processing may be an important regulatory step rather than mere degradation.


Subject(s)
Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Protein Precursors/blood , Animals , Blood Circulation , Glycosylation , Half-Life , Humans , Male , Rats , Rats, Wistar
14.
Clin Chem ; 56(9): 1424-31, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20624851

ABSTRACT

BACKGROUND: Cystatin C is a low molecular weight cysteine proteinase inhibitor whose plasma or serum concentrations have been shown to be better correlated with glomerular filtration rate than serum creatinine concentrations. Routine assays for cystatin C are based on use of polyclonal antibodies and immunoturbidimetric and nephelometric designs. This study aimed to develop a double-monoclonal immunoassay for cystatin C. METHODS: We tested functionality of 42 2-site antibody combinations involving 7 monoclonal antibodies with recombinant and plasma cystatin C. We developed a heterogeneous assay using 2 antibodies selected to give the best analytical performance. The assay used a dilution step and was based on a dry-reagent, all-in-one immunoassay concept with time-resolved fluorometry. The assay was performed on an automated immunoanalyzer in single wells that contained all the required assay components. We used heparin-derived plasma samples for methodological evaluation of the assay. RESULTS: From a relative epitope map involving 7 cystatin C-specific antibodies, we selected a pair of antibodies for a 2-site sandwich-type dry-reagent assay. Total assay time was 15 min, and 10 microL of a 100-fold diluted sample was used. The analytical detection limit (background + 3SD) and functional detection limit (CV 20%) were 0.01 mg/L and 0.02 mg/L, respectively. Within-run and total assay imprecision were <4.7% and <5.6% (at 0.84-3.2 mg/L), respectively, and plasma recoveries of added cystatin C were 94%-110%. Regression analysis with the Roche particle-enhanced immunoturbidimetric method yielded the following (SD): slope, 1.391 (0.029); y-intercept, -0.152 (0.045) mg/L; S(y logical or, bar belowx)=0.294 mg/L (n=131). CONCLUSIONS: The developed assay enables rapid and reliable measurement of cystatin C.


Subject(s)
Antibodies, Monoclonal , Cystatin C/blood , Calibration , Cystatin C/immunology , Epitope Mapping , Fluorometry , Humans , Immunoassay/methods , Indicators and Reagents , Recombinant Proteins/analysis , Recombinant Proteins/immunology
15.
Biochem J ; 429(2): 291-302, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20459395

ABSTRACT

KRP (kinase-related protein), also known as telokin, has been proposed to inhibit smooth muscle contractility by inhibiting the phosphorylation of the rMLC (regulatory myosin light chain) by the Ca2+-activated MLCK (myosin light chain kinase). Using the phosphatase inhibitor microcystin, we show in the present study that KRP also inhibits Ca2+-independent rMLC phosphorylation and smooth muscle contraction mediated by novel Ca2+-independent rMLC kinases. Incubating KRP-depleted Triton-skinned taenia coli with microcystin at pCa>8 induced a slow contraction reaching 90% of maximal force (Fmax) at pCa 4.5 after approximately 25 min. Loading the fibres with KRP significantly slowed down the force development, i.e. the time to reach 50% of Fmax was increased from 8 min to 35 min. KRP similarly inhibited rMLC phosphorylation of HMM (heavy meromyosin) in vitro by MLCK or by the constitutively active MLCK fragment (61K-MLCK) lacking the myosin-docking KRP domain. A C-terminally truncated KRP defective in myosin binding inhibited neither force nor HMM phosphorylation. Phosphorylated KRP inhibited the rMLC phosphorylation of HMM in vitro and Ca2+-insensitive contractions in fibres similar to unphosphorylated KRP, whereby the phosphorylation state of KRP was not altered in the fibres. We conclude that (i) KRP inhibits not only MLCK-induced contractions, but also those elicited by Ca2+-independent rMLC kinases; (ii) phosphorylation of KRP does not modulate this effect; (iii) binding of KRP to myosin is essential for this inhibition; and (iv) KRP inhibition of rMLC phosphorylation is most probably due to the shielding of the phosphorylation site on the rMLC.


Subject(s)
Colon/physiology , Muscle Contraction/physiology , Myosin-Light-Chain Kinase/metabolism , Peptide Fragments/metabolism , Animals , Base Sequence , Binding Sites , Calcium/metabolism , Calcium/pharmacology , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/pharmacology , Chickens , Colon/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Primers/genetics , Female , Guinea Pigs , Humans , In Vitro Techniques , Male , Marine Toxins , Microcystins/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Myosin Light Chains/chemistry , Myosin Light Chains/metabolism , Myosin Subfragments/chemistry , Myosin Subfragments/metabolism , Myosin-Light-Chain Kinase/chemistry , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/pharmacology , Octoxynol , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Phosphorylation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
16.
Clin Chem ; 56(7): 1166-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20489134

ABSTRACT

BACKGROUND: B-type natriuretic peptide (BNP) and its N-terminal fragment (NT-proBNP) are the products of the enzyme-mediated cleavage of their precursor molecule, proBNP. The clinical significance of proBNP-derived peptides as biomarkers of heart failure has been explored thoroughly, whereas little is known about the mechanisms of proBNP processing. We investigated the role of 2 candidate convertases, furin and corin, in human proBNP processing. METHODS: We measured proBNP expression in HEK 293 and furin-deficient LoVo cells. We used a furin inhibitor and a furin-specific small interfering RNA (siRNA) to explore the implication of furin in proBNP processing. Recombinant proBNPs were incubated with HEK 293 cells transfected with the corin-expressing plasmid. We applied mass spectrometry to analyze the products of furin- and corin-mediated cleavage. RESULTS: Reduction of furin activity significantly impaired proBNP processing in HEK 293 cells. Furin-deficient LoVo cells were unable to process proBNP, whereas coexpression with furin resulted in effective proBNP processing. Mass spectrometric analysis revealed that the furin-mediated cleavage of proBNP resulted in BNP 1-32, whereas corin-mediated cleavage led to the production of BNP 4-32. Some portion of proBNP in the plasma of heart failure patients was not glycosylated in the cleavage site region and was susceptible to furin-mediated cleavage. CONCLUSIONS: Both furin and corin are involved in the proBNP processing pathway, giving rise to distinct BNP forms. The significance of the presence of unprocessed proBNP in circulation that could be cleaved by the endogenous convertases should be further investigated for better understanding BNP physiology.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Furin/metabolism , Protein Precursors/metabolism , Serine Endopeptidases/metabolism , Brain-Derived Neurotrophic Factor/blood , Cell Line , Furin/antagonists & inhibitors , Furin/genetics , Glycosylation , Heart Failure/blood , Humans , Protein Precursors/blood , RNA, Small Interfering/genetics , Recombinant Proteins/metabolism , Serine Endopeptidases/genetics
17.
Exp Biol Med (Maywood) ; 234(10): 1201-11, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19596829

ABSTRACT

Endothelin-1 (ET-1) has been implicated in many cardiovascular diseases, including acute heart failure (AHF) due to myocardial ischemia. Previously we described the oral endothelin-converting enzyme (ECE) inhibitor, PP36, and in this study, we investigated its cardioprotective effect in more detail, and examined the role of PP36 in the neurohormonal activation in rats that had been subjected to acute myocardial ischemia due to the microsphere embolization of coronary microcirculation. PP36 treatment (3.5 x 10(-5) M/kg/day) led to a significant fourfold decrease in hypertensive response when big-ET-1 was administered to healthy, conscious rats. ECE inhibition did not affect mortality during the first 48 hours after ischemia initiation. Systemic hemodynamic, heart function, and neurohormonal activation were analyzed in the healthy control group, the AHF group, and the AHF+PP36 group two days after AHF induction. In conscious rats in the AHF+PP36 group, mean arterial pressure (MAP) was restored and became similar to that of the MAP of the control group. In anesthetized rats, in the AHF+PP36 group, MAP was not restored and was 22% lower than the MAP of the control group. Myocardial contractility was partially restored and cardiac relaxation significantly improved after PP36 application. Further analysis of cardiac output and peripheral resistance in anesthetized rats revealed no differences between the AHF group and the AHF+PP36 group. There were no differences in plasma ET-1 concentration, serum angiotensin converting enzyme activity, and in the adrenal glands' catecholamine content between the AHF group and the AHF+PP36 group. However, rats in the AHF+PP36 group demonstrated a 60% decrease in cardiac endothelial nitric oxide synthase (eNOS) protein expression, and a 56% reduction of myocardial norepinephrine release, when compared with the AHF group's animals. These results suggest that PP36 can preserve heart function during the recovery from acute ischemic injury, and may modulate the cardiac norepinephrine release and eNOS protein level.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Disease Models, Animal , Heart Failure/metabolism , Heart/drug effects , Metalloendopeptidases/antagonists & inhibitors , Neurotransmitter Agents/pharmacology , Acute Disease , Animals , Aspartic Acid Endopeptidases/metabolism , Endothelin-Converting Enzymes , Heart/physiopathology , Heart Failure/physiopathology , Male , Metalloendopeptidases/metabolism , Rats , Rats, Wistar
18.
Clin Chem ; 55(3): 489-98, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19168558

ABSTRACT

BACKGROUND: Processing of the brain natriuretic peptide (BNP) precursor, proBNP, is a convertase-dependent reaction that produces 2 molecules--the active BNP hormone and the N-terminal part of proBNP (NT-proBNP). Although proBNP was first described more than 15 years ago, very little is known about the cellular mechanism of its processing. The study of proBNP processing mechanisms is important, because processing impairments could be associated with the development of heart failure (HF). METHODS: The biochemical properties of recombinant proBNP and NT-proBNP and the same molecules derived from the blood of HF patients were analyzed by gel-filtration chromatography, site-directed mutagenesis, and different immunochemical methods with a panel of monoclonal antibodies (MAbs). RESULTS: Part of the proBNP molecule (amino acid residues 61-76) located near the cleavage site was inaccessible to specific MAbs because of the presence of O-glycans, whereas the same region in NT-proBNP was completely accessible. We demonstrated that a convertase (furin) could effectively cleave deglycosylated (but not intact) proBNP. Of several mutant proBNP forms produced in a HEK 293 cell line, only the T71A variant was effectively processed in the cell. CONCLUSIONS: Only proBNP that was not glycosylated in the region of the cleavage site could effectively be processed into BNP and NT-proBNP. Site-directed mutagenesis enabled us to ascertain the unique suppressing role of T71-bound O-glycan in proBNP processing.


Subject(s)
Natriuretic Peptide, Brain/chemistry , Natriuretic Peptide, Brain/metabolism , Protein Precursors/chemistry , Protein Precursors/metabolism , Animals , Cell Line , Cricetinae , Furin/metabolism , Glycosylation , Humans , Mice , Mutagenesis, Site-Directed , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/immunology , Protein Precursors/genetics , Protein Precursors/immunology
19.
Clin Chem ; 54(9): 1511-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18606632

ABSTRACT

BACKGROUND: Brain natriuretic peptide (BNP) is an unstable molecule that can rapidly lose immunologic activity in blood. Conventional sandwich BNP immunoassays use 2 antibodies specific to 2 different epitopes. Larger distances between epitopes are associated with a greater probability of proteolysis sites being located between the antibody-binding sites, and thus such assays have an increased susceptibility to underdetect BNP because of the increased likelihood of proteolytic degradation. The purpose of our study was to develop a sandwich immunoassay for the precise quantification of BNP and BNP precursor (proBNP) in human blood that is not susceptible to proteolysis. METHODS: Mice were immunized with an immune complex consisting of monoclonal antibody (MAb) 24C5 (specific for BNP peptide 11-22) and the entire BNP molecule. The MAb used in our assay (Ab-BNP2) recognizes the immune complex but neither free BNP nor MAb 24C5. RESULTS: We used MAbs 24C5 and Ab-BNP2 to develop a new type of sandwich BNP assay (the "single-epitope sandwich assay"), which requires only a short BNP fragment (fragment 11-22) for immunodetection. This assay recognizes both BNP and proBNP with the same efficiency and sensitivity and demonstrates both considerably less susceptibility to antigen degradation and greater stability of the measured antigen than conventional sandwich BNP immunoassays. CONCLUSIONS: We have developed this sensitive single-epitope sandwich assay for detecting BNP, proBNP, and their fragments in human blood. This assay appears promising for use in clinical studies to assist in triage, management, and outcomes assessment in heart failure patients.


Subject(s)
Immunoassay/methods , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/immunology , Protein Precursors/blood , Protein Precursors/immunology , Antibody Specificity/immunology , Chromatography, Gel , Epitopes/immunology , Humans
20.
Clin Chem ; 54(5): 866-73, 2008 May.
Article in English | MEDLINE | ID: mdl-18339697

ABSTRACT

BACKGROUND: Brain natriuretic peptide (BNP) or NT-proBNP (N-terminal fragment of BNP precursor) measurements are recommended as aids in diagnosis and prognosis of patients with heart failure. Recently it has been shown that proBNP is O-glycosylated in human blood. The goal of this study was to map sites on the NT-proBNP molecule that should be recognized by antibodies used in optimal NT-proBNP assays. METHODS: We analyzed endogenous NT-proBNP by several immunochemical methods using a broad panel of monoclonal antibodies specific to different epitopes of the NT-proBNP molecule. RESULTS: Treatment of endogenous NT-proBNP by a mixture of glycosidases resulted in significant improvement of the interaction between deglycosylated NT-proBNP and monoclonal antibodies (MAbs) specific to the mid-fragment of the molecule. MAbs specific to the N- and C-terminal parts of NT-proBNP (epitopes 13-24 and 63-76) were able to recognize glycosylated and deglycosylated protein with similar efficiency. CONCLUSIONS: The central part of endogenous NT-proBNP is glycosylated, making it almost "invisible" for the antibodies specific to the mid-fragment of the molecule. Thus sandwich assays using even one antibody (poly- or monoclonal) specific to the central part of the molecule could underestimate the real concentration of endogenous NT-proBNP. MAbs specific to the N- and C-terminal parts of NT-proBNP (epitopes 13-24 and 63-76) are the best candidates to be used in an assay for optimal NT-proBNP immunodetection.


Subject(s)
Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Antibodies, Monoclonal , Chromatography, Gel , Fluorescent Antibody Technique/methods , Glycosylation , Heart Failure/blood , Humans , Natriuretic Peptide, Brain/immunology , Peptide Fragments/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...