Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 15(5): 2890-2897, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855661

ABSTRACT

The feature Issue on "Dynamic Light Scattering in Biomedical Applications" presents a compilation of research breakthroughs and technological advancements that have shaped the field of biophotonics, particularly in the non-invasive exploration of biological tissues. Highlighting the significance of dynamic light scattering (DLS) alongside techniques like laser Doppler flowmetry (LDF), diffusing wave spectroscopy (DWS), and laser speckle contrast imaging (LSCI), this issue underscores the versatile applications of these methods in capturing the intricate dynamics of microcirculatory blood flow across various tissues. Contributions explore developments in fluorescence tomography, the integration of machine learning for data processing, enhancements in microscopy for cancer detection, and novel approaches in optical biophysics, among others. Innovations featured include a high-resolution speckle contrast tomography system for deep blood flow imaging, a rapid estimation technique for real-time tissue perfusion imaging, and the use of convolutional neural networks for efficient blood flow mapping. Additionally, studies delve into the impact of skin strain on spectral reflectance, the sensitivity of cerebral blood flow measurement techniques, and the potential of photobiomodulation for enhancing brain function. This issue not only showcases the latest theoretical and experimental strides in DLS-based imaging but also anticipates the continued evolution of these modalities for groundbreaking applications in disease detection, diagnosis, and monitoring, marking a pivotal contribution to the field of biomedical optics.

2.
Biomed Opt Express ; 15(2): 579-593, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404305

ABSTRACT

Dynamic light scattering (DLS) and laser speckle contrast imaging (LSCI) are closely related techniques that exploit the statistics of speckle patterns, which can be utilized to measure cerebral blood flow (CBF). Conventionally, the temporal speckle intensity auto-correlation function g2t(τ) is calculated in DLS, while the spatial speckle contrast Ks is calculated in LSCI measurements. Due to the rapid development of CMOS detection technology with increased camera frame rates while still maintaining a large number of pixels, the ensemble or spatial average of g2s(τ) as well as the temporal contrast Kt can be easily calculated and utilized to quantify CBF. Although many models have been established, a proper summary is still lacking to fully characterize DLS and LSCI measurements for spatial and temporal statistics, laser coherence properties, various motion types, etc. As a result, there are many instances where theoretical models are misused. For instance, mathematical formulas derived in the diffusive regime or for ergodic systems are sometimes applied to small animal brain measurements, e.g., mice brains, where the assumptions are not valid. Therefore, we aim to provide a review of the speckle theory for both DLS and LSCI measurements with detailed derivations from first principles, taking into account non-ergodicity, spatial and temporal statistics of speckles, scatterer motion types, and laser coherence properties. From these calculations, we elaborate on the differences between spatial and temporal averaging for DLS and LSCI measurements that are typically ignored but can result in inaccurate measurements of blood flow, particularly the spatially varying nature of the static component in g2t(τ) and Kt. We also obtained g2s(τ) maps in in vivo mouse brain measurements using high frame rate CMOS cameras which have not been demonstrated before, and compared with g2t(τ) and Ks,t. This work provides a useful guide for choosing the correct model to analyze spatial and temporal speckle statistics in in-vivo DLS and LSCI measurements.

3.
Biomed Opt Express ; 15(2): 1268-1277, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404300

ABSTRACT

Research on hippocampal blood flow is essential for gaining insight into its involvement in learning and memory and its role in age-related cognitive impairment and dementia. In this study, we applied laser speckle contrast imaging (LSCI) and dynamic light scattering imaging (DLSI) to monitor perfusion in mouse hippocampus via a chronic, optically transparent window. LSCI scans showed hippocampal blood vessels appear more out of focus than similar caliber vessels in the mouse cortex. We hypothesize that it is caused by the inverse vascular topology and increased contribution of multiply-scattered photons detected from the upper layers of the hippocampus. We support the hypothesis with DLSI, showing a 1300% increased contribution of multiple-scattering unordered dynamics regime in large hippocampal vessels.

4.
Biomed Opt Express ; 15(1): 336-345, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223196

ABSTRACT

Laser speckle contrast imaging (LSCI) is applied in various biomedical applications for full-field characterization of blood flow and tissue perfusion. The accuracy of the contrast interpretation and its conversion to the blood flow index depends on specific parameters of the optical system and scattering media. One such parameter is the polarisation of detected light, which is often adjusted to minimize specular reflections and image artefacts. The polarisation's effect on the detected light scattering dynamics and, therefore, the accuracy of LSCI data interpretation requires more detailed investigation. In this study, we used LSCI and Dynamic Light Scattering Imaging to evaluate the effects of the detected light polarisation when imaging perfusion in the mouse cortex. We found that cross-polarisation results in a shorter decorrelation time constant, a higher coherence degree and stronger dynamic scattering compared to the parallel-polarisation or no-polariser configurations. These results support the cross-polarisation configuration as the most optimal for brain cortex imaging and suggest against direct or calibrated comparisons between the contrast recordings made with different polarisation configurations.

5.
Artif Organs ; 48(4): 347-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37962102

ABSTRACT

BACKGROUND: Validated quantitative biomarkers for assessment of renal graft function during normothermic machine perfusion (NMP) conditions are lacking. The aim of this project was to quantify cortex microperfusion during ex vivo kidney perfusion using laser speckle contrast imaging (LSCI), and to evaluate the sensitivity of LSCI when measuring different levels of renal perfusion. Furthermore, we aimed to introduce LSCI measurements during NMP in differentially damaged kidneys. METHODS: Eleven porcine kidneys were nephrectomized and perfused ex vivo. Cortex microperfusion was simultaneously monitored using LSCI. First, a flow experiment examined the relationship between changes in delivered renal flow and corresponding changes in LSCI-derived cortex microperfusion. Second, renal cortical perfusion was reduced stepwise by introducing a microembolization model. Finally, LSCI was applied for measuring renal cortex microperfusion in kidneys exposed to minimal damage or 2 h warm ischemia (WI). RESULTS: Cortex microperfusion was calculated from the LSCI-obtained data. The flow experiment resulted in relatively minor changes in cortex microperfusion compared to the pump-induced changes in total renal flow. Based on stepwise injections of microspheres, we observed different levels of cortex microperfusion that correlated with administrated microsphere dosages (r2 = 0.95-0.99). We found no difference in LSCI measured cortex microperfusion between the kidneys exposed to minimal damage (renal cortex blood flow index, rcBFI = 2090-2600) and 2 h WI (rcBFI = 2189-2540). CONCLUSIONS: Based on this preliminary study, we demonstrated the feasibility of LSCI in quantifying cortex microperfusion during ex vivo perfusion. Furthermore, based on LSCI-measurements, cortical microperfusion was similar in kidneys exposed to minimal and 2 h WI.


Subject(s)
Kidney Transplantation , Laser Speckle Contrast Imaging , Animals , Swine , Blood Flow Velocity , Kidney/blood supply , Renal Circulation
6.
Sci Rep ; 13(1): 21954, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081921

ABSTRACT

The kidney has a sophisticated vascular structure that performs the unique function of filtering blood and managing blood pressure. Tubuloglomerular feedback is an intra-nephron negative feedback mechanism stabilizing single-nephron blood flow, glomerular filtration rate, and tubular flow rate, which is exhibited as self-sustained oscillations in single-nephron blood flow. We report the application of multi-scale laser speckle imaging to monitor global blood flow changes across the kidney surface (low zoom) and local changes in individual microvessels (high zoom) in normotensive and spontaneously hypertensive rats in vivo. We reveal significant differences in the parameters of TGF-mediated hemodynamics and patterns of synchronization. Furthermore, systemic infusion of a glucagon-like-peptide-1 receptor agonist, a potential renoprotective agent, induces vasodilation in both groups but only alters the magnitude of the TGF in Sprague Dawleys, although the underlying mechanisms remain unclear.


Subject(s)
Hypertension , Kidney Glomerulus , Rats , Animals , Blood Pressure , Feedback , Renal Circulation , Rats, Sprague-Dawley , Kidney , Hemodynamics/physiology , Glomerular Filtration Rate , Rats, Inbred SHR , Kidney Tubules/blood supply
7.
Cells ; 12(22)2023 11 20.
Article in English | MEDLINE | ID: mdl-37998402

ABSTRACT

The study of functions, mechanisms of generation, and pathways of movement of cerebral fluids has a long history, but the last decade has been especially productive. The proposed glymphatic hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an active discussion on both the criticism of some of the perspectives and our intensive study of new experimental facts. It was especially found that the intensity of the metabolite clearance changes significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level, a number of aspects of this problem have been focused on, such as astrocytes-glial cells, which, over the past two decades, have been recognized as equal partners of neurons and perform many important functions. In particular, an important role was assigned to astrocytes within the framework of the glymphatic hypothesis. In this review, we return to the "astrocytocentric" view of the BWRS function and the explanation of its activation during sleep from the viewpoint of new findings over the last decade. Our main conclusion is that the BWRS's action may be analyzed both at the systemic (whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional unit of the BWRS.


Subject(s)
Astrocytes , Brain , Astrocytes/metabolism , Brain/metabolism , Sleep/physiology , Neuroglia , Wakefulness/physiology
8.
Biophys Rev ; 15(5): 1303-1333, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37975000

ABSTRACT

Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.

9.
Sci Rep ; 13(1): 17970, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864006

ABSTRACT

Laser speckle contrast imaging (LSCI) is a rapidly developing technology broadly applied for the full-field characterization of tissue perfusion. Over the recent years, significant advancements have been made in interpreting LSCI measurements and improving the technique's accuracy. On the other hand, the method's precision has yet to be studied in detail, despite being as important as accuracy for many biomedical applications. Here we combine simulation, theory and animal experiments to systematically evaluate and re-analyze the role of key factors defining LSCI precision-speckle-to-pixel size ratio, polarisation, exposure time and camera-related noise. We show that contrary to the established assumptions, smaller speckle size and shorter exposure time can improve the precision, while the camera choice is less critical and does not affect the signal-to-noise ratio significantly.


Subject(s)
Laser Speckle Contrast Imaging , Upper Extremity , Animals , Computer Simulation , Laser-Doppler Flowmetry/methods , Regional Blood Flow
10.
Biomed Opt Express ; 14(4): 1355-1363, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078029

ABSTRACT

Laser speckle contrast imaging is a technique that provides valuable physiological information about vascular topology and blood flow dynamics. When using contrast analysis, it is possible to obtain detailed spatial information at the cost of sacrificing temporal resolution and vice versa. Such a trade-off becomes problematic when assessing blood dynamics in narrow vessels. This study presents a new contrast calculation method that preserves fine temporal dynamics and structural features when applied to periodic blood flow changes, such as cardiac pulsatility. We use simulations and in vivo experiments to compare our method with the standard spatial and temporal contrast calculations and demonstrate that the proposed method retains the spatial and temporal resolutions, resulting in the improved estimation of the blood flow dynamics.

11.
Physiol Rep ; 11(6): e15648, 2023 03.
Article in English | MEDLINE | ID: mdl-36949667

ABSTRACT

The tubuloglomerular feedback (TGF) mechanism modulates renal hemodynamics and glomerular filtration rate in individual nephrons. Our study aimed to evaluate the TGF-induced vascular responses by inhibiting Na-K-2Cl co-transporters and sodium-glucose co-transporters in rats. We assessed cortical hemodynamics with high-resolution laser speckle contrast imaging, which enabled the evaluation of blood flow in individual microvessels and analysis of their dynamical patterns in the time-frequency domain. We demonstrated that a systemic administration of furosemide abolishes TGF-mediated hemodynamic responses. Furthermore, we showed that the local microcirculatory blood flow decreased, and the TGF-induced hemodynamic oscillations were sustained but weakened after inhibiting sodium-glucose co-transporters in Sprague-Dawley rats.


Subject(s)
Neurovascular Coupling , Symporters , Rats , Animals , Rats, Sprague-Dawley , Feedback , Microcirculation , Glomerular Filtration Rate/physiology , Sodium/metabolism , Glucose , Kidney Tubules/metabolism
12.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293258

ABSTRACT

The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of "diffusion or non-diffusion", much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.


Subject(s)
Brain , Extracellular Space , Extracellular Space/metabolism , Diffusion , Biological Transport , Diffusion Magnetic Resonance Imaging
13.
Front Neurosci ; 16: 926828, 2022.
Article in English | MEDLINE | ID: mdl-36051645

ABSTRACT

Medical imaging techniques are widely used in preclinical research as diagnostic tools to detect physiological abnormalities and assess the progression of neurovascular disease in animal models. Despite the wealth of imaging options in magnetic resonance imaging (MRI), interpretation of imaging-derived parameters regarding underlying tissue properties is difficult due to technical limitations or lack of parameter specificity. To address the challenge of interpretation, we present an animal preparation protocol to achieve quantitative measures from both MRI and advanced optical techniques, including laser speckle contrast imaging and two-photon microscopy, in murine models. In this manner, non-translatable methods support and improve interpretation of less specific, translatable methods, i.e., MRI. Combining modalities for improved clinical interpretation involves satisfying the requirements of various methods. Furthermore, physiology unperturbed by anesthetics is a prerequisite for the strategy to succeed. Awake animal imaging with restraint provides an alternative to anesthesia and facilitates translatability of cerebral measurements. The method outlines design requirements for the setup and a corresponding reproducible surgical procedure for implanting a 3D printed head holder and cranial window to enable repeated multimodal imaging. We document the development, application, and validation of the method and provide examples confirming the usefulness of the design in acquiring high quality data from multiple modalities for quantification of a wide range of metrics of cerebral physiology in the same animal. The method contributes to preclinical small animal imaging, enabling sequential imaging of previously mutually exclusive techniques.

14.
Biomed Opt Express ; 13(4): 2312-2322, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35519248

ABSTRACT

Laser speckle contrast imaging is a robust and versatile blood flow imaging tool in basic and clinical research for its relatively simple construction and ease of customization. One of its key features is the scalability of the imaged field of view. With minimal changes to the system or analysis, laser speckle contrast imaging allows for high-resolution blood flow imaging through cranial windows or low-resolution perfusion visualization of perfusion over large areas, e.g. in human skin. We further utilize this feature and introduce a multi-scale laser speckle contrast imaging system, which we apply to study vasoreactivity in renal microcirculation. We combine high resolution (small field of view) to segment blood flow in individual vessels with low resolution (large field of view) to monitor global blood flow changes across the renal surface. Furthermore, we compare their performance when analyzing blood flow dynamics potentially associated with a single nephron and show that the previously published approaches, based on low-zoom imaging alone, provide inaccurate results in such applications.

15.
Elife ; 112022 05 06.
Article in English | MEDLINE | ID: mdl-35522041

ABSTRACT

Internephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronize over short distances, and potentially form large synchronized clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed. In the present study, we introduce an approach for high-resolution laser speckle imaging of renal blood flow and apply it to estimate the frequency and phase differences in rat kidney microcirculation under different conditions. The analysis unveiled the spatial and temporal evolution of synchronized blood flow clusters of various sizes, including the formation of large (>90 vessels) and long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback mechanism. Administration of vasoactive agents caused significant changes in the synchronization patterns and, thus, in nephrons' co-operative dynamics. Specifically, infusion of vasoconstrictor angiotensin II promoted stronger synchronization, while acetylcholine caused complete desynchronization. The results confirm the presence of the local synchronization in the renal microcirculatory blood flow and that it changes depending on the condition of the vascular network and the blood pressure, which will have further implications for the role of such synchronization in pathologies development.


Subject(s)
Kidney , Renal Circulation , Animals , Kidney Glomerulus/blood supply , Kidney Glomerulus/physiology , Microcirculation , Nephrons/physiology , Rats , Renal Circulation/physiology
16.
Biomed Opt Express ; 13(12): 6533-6549, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589566

ABSTRACT

We introduce a dynamic speckle model (DSM) to simulate the temporal evolution of fully developed speckle patterns arising from the interference of scattered light reemitted from dynamic tissue. Using this numerical tool, the performance of laser speckle contrast imaging (LSCI) or speckle contrast optical spectroscopy (SCOS) systems which quantify tissue dynamics using the spatial contrast of the speckle patterns with a certain camera exposure time is evaluated. We have investigated noise sources arising from the fundamental speckle statistics due to the finite sampling of the speckle patterns as well as those induced by experimental measurement conditions including shot noise, camera dark and read noise, and calibrated the parameters of an analytical noise model initially developed in the fundamental or shot noise regime that quantifies the performance of SCOS systems using the number of independent observables (NIO). Our analysis is particularly focused on the low photon flux regime relevant for human brain measurements, where the impact of shot noise and camera read noise can become significant. Our numerical model is also validated experimentally using a novel fiber based SCOS (fb-SCOS) system for a dynamic sample. We have found that the signal-to-noise ratio (SNR) of fb-SCOS measurements plateaus at a camera exposure time, which marks the regime where shot and fundamental noise dominates over camera read noise. For a fixed total measurement time, there exists an optimized camera exposure time if temporal averaging is utilized to improve SNR. For a certain camera exposure time, photon flux value, and camera noise properties, there exists an optimized speckle-to-pixel size ratio (s/p) at which SNR is maximized. Our work provides the design principles for any LSCI or SCOS systems given the detected photon flux and properties of the instruments, which will guide the experimental development of a high-quality, low-cost fb-SCOS system that monitors human brain blood flow and functions.

17.
Biomed Opt Express ; 12(6): 3571-3583, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221679

ABSTRACT

Laser speckle contrast imaging (LSCI) is a real-time full-field non-invasive technique, which is broadly applied to visualize blood flow in biomedical applications. In its foundation is the link between the speckle contrast and dynamics of light scattering particles-erythrocytes. The mathematical form describing this relationship, which is critical for accurate blood flow estimation, depends on the sample's light-scattering properties. However, in biological applications, these properties are often unknown, thus requiring assumptions to be made to perform LSCI analysis. Here, we review the most critical assumptions in the LSCI theory and simulate how they affect blood flow estimation accuracy. We show that the most commonly applied model can severely underestimate the flow change, particularly when imaging brain parenchyma or other capillary perfused tissue (e.g. skin) under ischemic conditions. Based on these observations and guided by the recent experimental results, we propose an alternative model that allows measuring blood flow changes with higher accuracy.

18.
Stroke ; 52(6): e250-e258, 2021 06.
Article in English | MEDLINE | ID: mdl-33947213

ABSTRACT

Despite successful recanalization, a significant number of patients with ischemic stroke experience impaired local brain tissue reperfusion with adverse clinical outcome. The cause and mechanism of this multifactorial complication are yet to be understood. At the current moment, major attention is given to dysfunction in blood-brain barrier and capillary blood flow but contribution of exaggerated constriction of cerebral arterioles has also been suggested. In the brain, arterioles significantly contribute to vascular resistance and thus control of perfusion. Accordingly, pathological changes in arteriolar wall function can, therefore, limit sufficient reperfusion in ischemic stroke, but this has not yet received sufficient attention. Although an increased vascular tone after reperfusion has been demonstrated in several studies, the mechanism behind it remains to be characterized. Importantly, the majority of conventional mechanisms controlling vascular contraction failed to explain elevated cerebrovascular tone after reperfusion. We propose here that the Na,K-ATPase-dependent Src kinase activation are the key mechanisms responsible for elevation of cerebrovascular tone after reperfusion. The Na,K-ATPase, which is essential to control intracellular ion homeostasis, also executes numerous signaling functions. Under hypoxic conditions, the Na,K-ATPase is endocytosed from the membrane of vascular smooth muscle cells. This initiates the Src kinase signaling pathway that sensitizes the contractile machinery to intracellular Ca2+ resulting in hypercontractility of vascular smooth muscle cells and, thus, elevated cerebrovascular tone that can contribute to impaired reperfusion after stroke. This mechanism integrates with cerebral edema that was suggested to underlie impaired reperfusion and is further supported by several studies, which are discussed in this article. However, final demonstration of the molecular mechanism behind Src kinase-associated arteriolar hypercontractility in stroke remains to be done.


Subject(s)
Reperfusion , Stroke/enzymology , Stroke/therapy , Vasoconstriction/physiology , src-Family Kinases/metabolism , Animals , Arterioles/drug effects , Arterioles/enzymology , Brain/blood supply , Brain/enzymology , Cerebral Revascularization/trends , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Reperfusion/trends , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Vasoconstriction/drug effects , src-Family Kinases/antagonists & inhibitors
19.
Front Cell Neurosci ; 15: 645068, 2021.
Article in English | MEDLINE | ID: mdl-33746715

ABSTRACT

Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes-elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.

20.
J Cereb Blood Flow Metab ; 41(2): 236-252, 2021 02.
Article in English | MEDLINE | ID: mdl-32237951

ABSTRACT

Ever since the introduction of thrombolysis and the subsequent expansion of endovascular treatments for acute ischemic stroke, it remains to be identified why the actual outcomes are less favorable despite recanalization. Here, by high spatio-temporal resolution imaging of capillary circulation in mice, we introduce the pathological phenomenon of dynamic flow stalls in cerebral capillaries, occurring persistently in salvageable penumbra after reperfusion. These stalls, which are different from permanent cellular plugs of no-reflow, were temporarily and repetitively occurring in the capillary network, impairing the overall circulation like small focal traffic jams. In vivo microscopy in the ischemic penumbra revealed leukocytes traveling slowly through capillary lumen or getting stuck, while red blood cell flow was being disturbed in the neighboring segments under reperfused conditions. Stall dynamics could be modulated, by injection of an anti-Ly6G antibody specifically targeting neutrophils. Decreased number and duration of stalls were associated with improvement in penumbral blood flow within 2-24 h after reperfusion along with increased capillary oxygenation, decreased cellular damage and improved functional outcome. Thereby, dynamic microcirculatory stall phenomenon can be a contributing factor to ongoing penumbral injury and is a potential hyperacute mechanism adding on previous observations of detrimental effects of activated neutrophils in ischemic stroke.


Subject(s)
Brain Ischemia/blood , Microcirculation/physiology , Neutrophils/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...