Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 123: 111954, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812582

ABSTRACT

Developing advanced materials for wound dressings is a very challenging, yet unaddressed task. These systems are supposed to act as temporary skin substitutes, performing multiple functions, including fluid absorption and antimicrobial action, supporting cell proliferation and migration in order to promote the skin regeneration process. Following a global bioinspired approach, in this study, we developed a multifunctional textile for wound dressing applications. Biodegradable polyhydroxybutyrate/poly-3-caprolactone (PHB/PCL) mats were fabricated by electrospinning to mimic the extracellular matrix (ECM), thus providing structural and biochemical support to tissue regeneration. Furthermore, inspired by nature's strategy which exploits melanin as an effective weapon against pathogens infection, PHB/PCL mats were modified with hybrid Melanin-TiO2 nanostructures. These were combined to PHB/PCL mats following two different strategies: in-situ incorporation during electrospinning process, alternately ex-post coating by electrospraying onto obtained mats. All samples revealed huge water uptake and poor cytotoxicity towards HaCat eukaryotic cells. Melanin-TiO2 coating conferred PHB/PCL mats significant antimicrobial activity towards both Gram(+) and Gram(-) strains, marked hydrophilic properties as well as bioactivity which is expected to promote materials-cells interaction. This study is going to provide a novel paradigm for the design of active wound dressings for regenerative medicine.


Subject(s)
Anti-Infective Agents , Nanofibers , Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bandages
SELECTION OF CITATIONS
SEARCH DETAIL
...