Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 69(2): 226-34, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19747545

ABSTRACT

BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).


Subject(s)
DNA Restriction Enzymes/metabolism , DNA, Single-Stranded/metabolism , Amino Acid Sequence , Bacteriophage T7/genetics , Base Sequence , Catalytic Domain , Cloning, Molecular , DNA Breaks, Single-Stranded , DNA Restriction Enzymes/genetics , DNA, Single-Stranded/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Sequence Homology, Amino Acid
2.
Anal Biochem ; 330(2): 227-41, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15203328

ABSTRACT

A new approach for optically sequencing ensembles of single DNA molecules using DNA polymerase to mediate the consecutive incorporation of fluorochrome-labeled nucleotides into an array of large single DNA molecules is presented. The approach utilizes cycles of labeled fluorochrome addition, detection to count incorporations, and bleaching to reset the counter. These additions are imaged and analyzed to estimate the number of labeled additions and to correlate them on a per-locus basis along DNA backbones. Initial studies used precisely labeled polymerase chain reaction products to aid the development and validation of simple models of fluorochrome point spread functions within the imaging system. In complementary studies, nucleotides labeled with the fluorochrome R110 were incorporated into surface-elongated lambda DNA, and fluorescent signals corresponding to the addition of R110-dUTP were counted and assigned precise loci along DNA backbones. The labeled DNAs were then subjected to photobleaching and to a second cycle of addition of R110-labeled nucleotides-a second round of additions was correlated with the first to establish strings of addition histories among the ensemble of largely double-stranded templates. These results confirm the basic operational validity of this approach and point the way to the development of a practical system for optical sequencing.


Subject(s)
Microchemistry/methods , Sequence Analysis, DNA/methods , DNA-Directed DNA Polymerase , Deoxyuracil Nucleotides , Equipment Design , Fluorescent Dyes , Microchemistry/instrumentation , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Rhodamines , Sequence Analysis, DNA/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...