Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 162(7): 1220-1231, 2016 07.
Article in English | MEDLINE | ID: mdl-27129867

ABSTRACT

Two homologous proteins, UxuR and ExuR, were previously predicted to repress synthesis of enzymes required for hexuronic acid metabolism, but little is known about the relative roles of these proteins in gene regulation. We confirmed the previous report that UxuR is essential for rapid growth with d-glucuronate as the primary source of carbon and energy. In contrast, an exuR mutant grew more rapidly on d-glucuronate than the parent. Transcription of exuR is initiated at a σ70-dependent promoter predicted in silico. Purified ExuR bound to the exuR regulatory region in the presence, but not in the absence, of d-glucuronate. Apparently weaker UxuR binding in the presence of glucuronate was also detected, and its addition decreased ExuR binding by forming ExuR-UxuR heterodimers. Glucuronate induced exuR transcription in the parental strain, but not in the exuR mutant. No evidence was obtained for cAMP-dependent regulation of exuR by the catabolite repressor protein (CRP). A previous study reported that the divergent yjjM and yjjN genes, essential for l-galactonate metabolism, are repressed by UxuR. We showed that ExuR binds to the yjjM-yjjN regulatory region, and that the binding is also glucuronate-dependent. As for the exuR promoter, UxuR appeared to decrease ExuR binding. ExuR is required for glucuronate induction of yjjM and yjjN, and CRP is required for their transcription. The combined data established that UxuR and ExuR fulfil contrasting roles in regulating hexuronic acid metabolism and indicate that ExuR can function as a transcription activator, possibly by inactivating the repressor function of UxuR by heterodimer formation.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/genetics , Genes, Regulator/genetics , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism , Base Sequence , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism
2.
J Biomol Struct Dyn ; 34(10): 2296-304, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26549308

ABSTRACT

Gammaproteobacteria get energy for their growth from different carbon sources using either glycolysis or alternative metabolic pathways induced in stress conditions. These metabolic switches are coordinated by complex interplay of regulatory proteins sensing concentrations of available metabolites by mechanisms yet to be understood. Here, we use two transcriptional regulators, ExuR and UxuR, controlling d-galacturonate (d-gal) and d-glucuronate metabolism in Escherichia coli, as the targets for computational search of low-molecular compounds capable to bind their ligand-binding domains. Using a flexible molecular docking, we modeled the interactions of these proteins with substrates and intermediates of glycolysis, Ashwell and Entner-Doudoroff pathways. For UxuR, the two preferred sites of ligand binding were found: one is located within the C-terminal domain, while another occupies the interdomain space. For ExuR, the only one preferred site was detected in the interdomain area. Availability of this area to different ligands suggests that, similar to the Lac repressor, the DNA-binding properties of UxuR and ExuR may be changed by repositioning of their domains. Experimental assays confirmed the ability of ligands with highest affinities to bind the regulatory proteins and affect their interaction with DNA. d-gal that is carried into the cell by the ExuT transporter appeared to be the best ligand for repressor of the exuT transcription, ExuR. For UxuR, the highest affinity was found for d-fructuronate transported by GntP, which biosynthesis is repressed by UxuR. Providing a feedback loop to balance the concentrations of different nutrients, such ligand-mediated modulation can also coordinate switching between different metabolic pathways in bacteria.


Subject(s)
Escherichia coli Proteins/chemistry , Ligands , Models, Molecular , Molecular Conformation , Transcription Factors/chemistry , Binding Sites , Escherichia coli Proteins/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...