Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 76(23): 6901-6910, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27634757

ABSTRACT

Multiple myeloma is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here, we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in multiple myeloma cell lines and primary bone marrow cells from patients. CD166+ multiple myeloma cells homed more efficiently than CD166- cells to the bone marrow of engrafted immunodeficient NSG mice. CD166 silencing in multiple myeloma cells enabled longer survival, a smaller tumor burden, and less osteolytic lesions, as compared with mice bearing control cells. CD166 deficiency in multiple myeloma cell lines or CD138+ bone marrow cells from multiple myeloma patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Furthermore, CD166 deficiency in multiple myeloma cells also reduced the formation of osteolytic disease in vivo after intratibial engraftment. Mechanistic investigation revealed that CD166 expression in multiple myeloma cells inhibited osteoblastogenesis of bone marrow-derived osteoblast progenitors by suppressing Runx2 gene expression. Conversely, CD166 expression in multiple myeloma cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in multiple myeloma cell homing to the bone marrow and multiple myeloma progression, rationalizing its further study as a candidate therapeutic target for multiple myeloma treatment. Cancer Res; 76(23); 6901-10. ©2016 AACR.


Subject(s)
Antigens, CD/adverse effects , Cell Adhesion Molecules, Neuronal/adverse effects , Fetal Proteins/adverse effects , Multiple Myeloma/genetics , Osteolysis/etiology , Animals , Cell Adhesion Molecules/metabolism , Cell Differentiation , Disease Progression , Humans , Mice , Mice, Inbred C57BL , Multiple Myeloma/complications , Multiple Myeloma/pathology , Transfection , Xenograft Model Antitumor Assays
2.
Blood ; 124(4): 519-29, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24740813

ABSTRACT

We previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166(-) cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/physiology , Biomarkers/metabolism , Bone Marrow Cells/metabolism , Hematopoietic Stem Cells/cytology , Stem Cell Niche/physiology , Animals , Antigens, CD/metabolism , Chromatin Immunoprecipitation , Flow Cytometry , Hematopoietic Stem Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Receptors, Cell Surface/metabolism , Signaling Lymphocytic Activation Molecule Family Member 1
3.
Nature ; 495(7441): 365-9, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23485965

ABSTRACT

To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.


Subject(s)
Dinoprostone/metabolism , Hematopoietic Stem Cells/cytology , Stem Cells/cytology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzylamines , Cell Count , Cell Movement/physiology , Cells, Cultured , Cyclams , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/drug effects , Heterocyclic Compounds/pharmacology , Humans , Meloxicam , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/genetics , Papio , Receptors, Prostaglandin E, EP4 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Stem Cells/drug effects , Thiazines/pharmacology , Thiazoles/pharmacology
4.
Blood ; 115(16): 3239-48, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20154218

ABSTRACT

Hematopoietic stem (HSC) and progenitor (HPC) cell fate is governed by intrinsic and extrinsic parameters. We examined the impact of hematopoietic niche elements on HSC and HPC function by analyzing the combined effect of osteoblasts (OBs) and stromal cells (SCs) on Lineage(-)Sca-1(+)CD117(+) (LSK) cells. CFU expansion and marrow repopulating potential of cultured Lineage(-)Sca-1(+)CD117(+) cells were significantly higher in OB compared with SC cultures, thus corroborating the importance of OBs in the competence of the hematopoietic niche. OB-mediated enhancement of HSC and HPC function was reduced in cocultures of OBs and SCs, suggesting that SCs suppressed the OB-mediated hematopoiesis-enhancing activity. Although the suppressive effect of SC was mediated by adipocytes, probably through up-regulation of neuropilin-1, the OB-mediated enhanced hematopoiesis function was elaborated through Notch signaling. Expression of Notch 2, Jagged 1 and 2, Delta 1 and 4, Hes 1 and 5, and Deltex was increased in OB cultures and suppressed in SC and OB/SC cultures. Phenotypic fractionation of OBs did not segregate the hematopoiesis-enhancing activity but demonstrated that this function is common to OBs from different anatomic sites. These data illustrate that OBs promote in vitro maintenance of hematopoietic functions, including repopulating potential by up-regulating Notch-mediated signaling between HSCs and OBs.


Subject(s)
Bone Marrow/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Osteoblasts/cytology , Signal Transduction/physiology , Stem Cell Niche/physiology , Animals , Cell Communication , Cell Differentiation/physiology , Cell Proliferation , Cell Separation , Cells, Cultured , Coculture Techniques , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Receptors, Notch/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/cytology , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...