Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 2(4): 285-300, 1995 Oct.
Article in English | MEDLINE | ID: mdl-17180034

ABSTRACT

The origin of programmed cell death (PCD) has been linked to the emergence of multicellular organisms. Trypanosoma cruzi, a member of one of the earliest diverging eukaryotes, is a protozoan unicellular parasite that undergoes three major differentiation changes and requires two different hosts. We report that the in vitro differentiation of the proliferating epimastigote stage into the G0/G1 arrested trypomastigote stage is associated with massive epimastigote death that shows the cytoplasmic and nuclear morphological features and DNA fragmentation pattern of apoptosis, the most frequent phenotype of PCD in multicellular organisms. Apoptosis could be accelerated or prevented by modifying culture conditions or cell density, indicating that extracellular signals influenced the epimastigote decision between life and death. Epimastigotes responded to complement-mediated immunological agression by undergoing apoptosis, while undergoing necrosis in response to nonphysiological saponin-mediated damage. PCD may participate into the optimal adaptation of T. cruzi to its different hosts, and the avoidance of a local competition between a G0/G1 arrested stage and its proliferating progenitor. The existence of a regulated cell death programme inducing an apoptotic phenotype in a unicellular eukaryote provides a paradigm for a widespread role for PCD in the control of cell survival, which extends beyond the evolutionary constraints that may be specific to multicellular organisms and raises the question of the origin and nature of the genes involved. Another implication is that PCD induction could represent a target for therapeutic strategies against unicellular pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...