Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Article in English | MEDLINE | ID: mdl-38504564

ABSTRACT

Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brain- and the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.

2.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373470

ABSTRACT

Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.


Subject(s)
Gastrointestinal Microbiome , Nervous System , Humans , Animals , Enteric Nervous System , Nervous System/metabolism , Brain-Gut Axis , Intestines/metabolism , Intestines/microbiology , Nervous System Diseases/metabolism , Nervous System Diseases/microbiology , Nervous System Diseases/pathology , Dysbiosis/metabolism , Dysbiosis/microbiology , Dysbiosis/pathology
3.
J Ginseng Res ; 47(3): 359-365, 2023 May.
Article in English | MEDLINE | ID: mdl-37252279

ABSTRACT

Ginseng was the most revered of the herbs in ancient times in China, Korea, Japan, America. Ginseng was discovered over 5000 years ago in the mountains of Manchuria, China. References to ginseng are found in books dating back more than two millennia. It is revered by the Chinese people as it is considered a herb for everything use and therefore for a wide range of diseases (currently its Latin name derived from the Greek panacea, meanings, that is, for everything). So, it was used exclusively by the Chinese Emperor's, and they were willing to pay the price without problems. Increasing its fame, ginseng brought a flourishing international trade that allowed Korea to supply China with silk and medicines in exchange for wild ginseng and later along with what grows in America.

4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982382

ABSTRACT

The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , MicroRNAs , Vascular Diseases , Humans , MicroRNAs/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/complications , Heart Atria/metabolism , Biomarkers/metabolism , Vascular Diseases/complications , Fibrosis
5.
Curr Pharm Des ; 28(35): 2879-2889, 2022.
Article in English | MEDLINE | ID: mdl-36125834

ABSTRACT

The complexity of the use of antimicrobials for dental use (such as antibiotics) is directly related not only to the mode of onset of an oral infection (linked to numerous factors of local causality and comorbidity) but also to the predisposing risk for the general health of the patient with putative serious consequences related to the neck district. The abuse and misuse of antibiotics may lead to resistance to certain bacterial strains. In this regard, the evaluation of the risk/benefit of their use (especially in pregnant women) can be divided into two phases: risk analysis and subsequently risk management for the benefit of the patient for the oral pathology to be prevented or treated, respectively. This study seeks to focus on the issues and management of patients with certain antimicrobials during dental practice, placing special emphasis on new classes of antibiotics.


Subject(s)
Anti-Bacterial Agents , Mouth Diseases , Pregnancy , Humans , Female , Anti-Bacterial Agents/adverse effects , Bacteria , Mouth Diseases/drug therapy
6.
J Clin Med ; 11(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566637

ABSTRACT

Multiple myeloma (MM) is a plasma cell (PC) malignancy whose development flourishes in the bone marrow microenvironment (BMME). The BMME components' immunoediting may foster MM progression by favoring initial immunotolerance and subsequent tumor cell escape from immune surveillance. In this dynamic process, immune effector cells are silenced and become progressively anergic, thus contributing to explaining the mechanisms of drug resistance in unresponsive and relapsed MM patients. Besides traditional treatments, several new strategies seek to re-establish the immunological balance in the BMME, especially in already-treated MM patients, by targeting key components of the immunoediting process. Immune checkpoints, such as CXCR4, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), PD-1, and CTLA-4, have been identified as common immunotolerance steps for immunotherapy. B-cell maturation antigen (BCMA), expressed on MMPCs, is a target for CAR-T cell therapy, antibody-(Ab) drug conjugates (ADCs), and bispecific mAbs. Approved anti-CD38 (daratumumab, isatuximab), anti-VLA4 (natalizumab), and anti-SLAMF7 (elotuzumab) mAbs interfere with immunoediting pathways. New experimental drugs currently being evaluated (CD137 blockers, MSC-derived microvesicle blockers, CSF-1/CSF-1R system blockers, and Th17/IL-17/IL-17R blockers) or already approved (denosumab and bisphosphonates) may help slow down immune escape and disease progression. Thus, the identification of deregulated mechanisms may identify novel immunotherapeutic approaches to improve MM patients' outcomes.

7.
Sports Med ; 52(10): 2355-2369, 2022 10.
Article in English | MEDLINE | ID: mdl-35596883

ABSTRACT

Gut microbiota refers to those microorganisms in the human digestive tract that display activities fundamental in human life. With at least 4 million different bacterial types, the gut microbiota is composed of bacteria that are present at levels sixfold greater than the total number of cells in the entire human body. Among its multiple functions, the microbiota helps promote the bioavailability of some nutrients and the metabolization of food, and protects the intestinal mucosa from the aggression of pathogenic microorganisms. Moreover, by stimulating the production of intestinal mediators able to reach the central nervous system (gut/brain axis), the gut microbiota participates in the modulation of human moods and behaviors. Several endogenous and exogenous factors can cause dysbiosis with important consequences on the composition and functions of the microbiota. Recent research underlines the importance of appropriate physical activity (such as sports), nutrition, and a healthy lifestyle to ensure the presence of a functional physiological microbiota working to maintain the health of the whole human organism. Indeed, in addition to bowel disturbances, variations in the qualitative and quantitative microbial composition of the gastrointestinal tract might have systemic negative effects. Here, we review recent studies on the effects of physical activity on gut microbiota with the aim of identifying potential mechanisms by which exercise could affect gut microbiota composition and function. Whether physical exercise of variable work intensity might reflect changes in intestinal health is analyzed.


Subject(s)
Gastrointestinal Microbiome , Sports , Athletes , Dysbiosis/microbiology , Exercise , Gastrointestinal Microbiome/physiology , Humans
8.
Expert Rev Anti Infect Ther ; 20(5): 681-706, 2022 05.
Article in English | MEDLINE | ID: mdl-34874223

ABSTRACT

INTRODUCTION: The human defense against microorganisms dates back to the ancient civilizations, with attempts to use substances from vegetal, animal, or inorganic origin to fight infections. Today, the emerging threat of multidrug-resistant bacteria highlights the consequences of antibiotics inappropriate use, and the urgent need for novel effective molecules. METHODS AND MATERIALS: We extensively researched on more recent data within PubMed, Medline, Web of Science, Elsevier's EMBASE, Cochrane Review for the modern pharmacology in between 1987 - 2021. The historical evolution included a detailed analysis of past studies on the significance of medical applications in the ancient therapeutic field. AREAS COVERED: We examined the history of antibiotics development and discovery, the most relevant biochemical aspects of their mode of action, and the biomolecular mechanisms conferring bacterial resistance to antibiotics. EXPERT OPINION: The list of pathogens showing low sensitivity or full resistance to most currently available antibiotics is growing worldwide. Long after the 'golden age' of antibiotic discovery, the most novel molecules should be carefully reserved to treat serious bacterial infections of susceptible bacteria. A correct diagnostic and therapeutic procedure can slow down the spreading of nosocomial and community infections sustained by multidrug-resistant bacterial strains.


Subject(s)
Bacterial Infections , Drug Resistance, Multiple, Bacterial , Animals , Anti-Bacterial Agents/therapeutic use , Bacteria , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Humans
9.
Antioxidants (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34439505

ABSTRACT

A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aß) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aß and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.

10.
Molecules ; 25(13)2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32635492

ABSTRACT

The pandemic proportion of diabesity-a combination of obesity and diabetes-sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.


Subject(s)
Antioxidants/pharmacology , Cardiovascular Diseases/drug therapy , Catechin/analogs & derivatives , Diabetes Mellitus/drug therapy , Obesity/complications , Signal Transduction/drug effects , Animals , Cardiovascular Diseases/etiology , Catechin/pharmacology , Humans
11.
Biomolecules ; 10(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512924

ABSTRACT

We explored the significance of the L-Arginine/asymmetric dimethylarginine (L-Arg/ADMA) ratio as a biomarker of endothelial dysfunction in stroke patients. To this aim, we evaluated the correlation, in terms of severity, between the degree of endothelial dysfunction (by L-Arg/ADMA ratio), the methylene tetrahydrofolate reductase (MTHFR) genotype, and the interatrial septum (IAS) phenotype in subject with a history of stroke. Methods and Results: L-Arg, ADMA, and MTHFR genotypes were evaluated; the IAS phenotype was assessed by transesophageal echocardiography. Patients were grouped according to the severity of IAS defects and the residual enzymatic activity of MTHFR-mutated variants, and values of L-Arg/ADMA ratio were measured in each subgroup. Of 57 patients, 10 had a septum integrum (SI), 38 a patent foramen ovale (PFO), and 9 an ostium secundum (OS). The L-Arg/ADMA ratio differed across septum phenotypes (p ≤ 0.01), and was higher in SI than in PFO or OS patients (p ≤ 0.05, p ≤ 0.01, respectively). In the PFO subgroup a negative correlation was found between the L-Arg/ADMA ratio and PFO tunnel length/height ratio (p ≤ 0.05; r = - 0.37; R2 = 0.14). Interestingly, the L-Arg/ADMA ratio varied across MTHFR genotypes (p ≤ 0.0001) and was lower in subgroups carrying the most impaired enzyme with respect to patients carrying the conservative MTHFR (p ≤ 0.0001, p ≤ 0.05, respectively). Consistently, OS patients carried the most dysfunctional MTHFR genotypes, whereas SI patients the least ones. Conclusions: A low L-Arg/ADMA ratio correlates with impaired activity of MTHFR and with the jeopardized IAS phenotype along a severity spectrum encompassing OS, PFO with long/tight tunnel, PFO with short/large tunnel, and SI. This infers that genetic MTHFR defects may underlie endothelial dysfunction-related IAS abnormalities, and predispose to a cryptogenic stroke. Our findings emphasize the role of the L-Arg/ADMA ratio as a reliable marker of stroke susceptibility in carriers of IAS abnormalities, and suggest its potential use both as a diagnostic tool and as a decision aid for therapy.


Subject(s)
Atrial Septum/metabolism , Endothelium, Vascular/metabolism , Ischemic Stroke/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Adult , Atrial Septum/pathology , Endothelium, Vascular/pathology , Genotype , Humans , Ischemic Stroke/diagnosis , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Retrospective Studies
12.
Int J Mol Sci ; 20(12)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212911

ABSTRACT

In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing "precision medicine" in the context of diabetic illness.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Endothelium, Vascular/metabolism , Epigenesis, Genetic , Precision Medicine , Animals , Cardiovascular Diseases/etiology , DNA Methylation , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Endothelium, Vascular/drug effects , Genetic Predisposition to Disease , Genome-Wide Association Study , Histones/metabolism , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Precision Medicine/methods
13.
PLoS One ; 14(1): e0210654, 2019.
Article in English | MEDLINE | ID: mdl-30653603

ABSTRACT

BACKGROUND: Adiponectin (AD) cardioprotective activities are mediated by AMPK, a fuel-sensing molecule sharing common targets and cellular activities with SIRT-1. Whether AD preconditioning may involve SIRT-1 activity is not known; however, the protective role of SIRT-1 during ischemia and the potential interplay between AMPK and SIRT-1 suggest this possibility. METHODS: Isolated hearts from male Sprague-Dawley rats (n = 85) underwent ischemia/reperfusion (I/R, 30/180 min). Preconditioning with resveratrol (RSV, SIRT-1 activator) was compared to preconditioning with AD alone, or in combination with compound C (CC, AMPK inhibitor) or sirtinol (STN, SIRT-1 inhibitor). For each heart, left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF) and left ventricular infarct mass (IM) were measured, together with the phosphorylation/activation status of AMPK, LKB1, eNOS and SIRT-1, at the beginning (15 min) and at the end (180 min) of reperfusion. RESULTS AND CONCLUSIONS: When compared to I/R, both RSV and AD improved cardiac function and reduced IM (p < 0.01, p < 0.05, respectively). Cardioprotective effects of AD were completely reversed in the AD+CC group, and significantly attenuated in the AD+STN group. Both RSV and AD increased eNOS, AMPK and LKB1 phosphorylation (for each parameter: p < 0.05 vs. I/R, in both RSV and AD treatment groups) at 15 min of reperfusion, and SIRT-1 activity at the end of reperfusion (p < 0.01, p < 0.05 vs. I/R, respectively). Interestingly, AD-mediated phosphorylation of AMPK and LKB1, and SIRT-1 deacetylation activity was markedly reduced in both the AD+CC and AD+STN groups (p < 0.05 vs. AD). Thus, AD-mediated cardioprotection requires both AMPK and SIRT-1 signaling pathways, that act as a component of a cycle and regulate each other's activities.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Ischemic Preconditioning/methods , Sirtuin 1/metabolism , Adiponectin/genetics , Animals , Male , Myocardial Reperfusion Injury/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
14.
PLoS One ; 13(8): e0202354, 2018.
Article in English | MEDLINE | ID: mdl-30092054

ABSTRACT

The potential role of calcimimetics as vasculotropic agents has been suggested since the discovery that calcium sensing receptors (CaSRs) are expressed in cardiovascular tissues. However, whether this effect is CaSR-dependent or -independent is still unclear. In the present study the vascular activity of calcimimetic R-568 was investigated in mesenteric vascular beds (MVBs) isolated from Spontaneously Hypertensive rats (SHR) and the relative age-matched Wistar-Kyoto (WKY) control rats. Pre-constricted MBVs were perfused with increasing concentrations of R-568 (10 nM- 30 µM) resulting in a rapid dose-dependent vasodilatation. However, in MVBs from SHR this was preceded by a small but significant vasoconstriction at lowest nanomolar concentrations used (10-300 nM). Pre-treatment with pharmacological inhibitors of nitric oxide (NO) synthase (NOS, L-NAME), KCa channels (CTX), cyclo-oxygenase (INDO) and CaSR (Calhex) or the endothelium removal suggest that NO, CaSR and the endothelium itself contribute to the R-568 vasodilatory/vasoconstrictor effects observed respectively in WKY/SHR MVBs. Conversely, the vasodilatory effects resulted by highest R-568 concentration were independent of these factors. Then, the ability of lower R-568 doses (0.1-1 µM) to activate endothelial-NOS (eNOS) pathway in MVBs homogenates was evaluated. The Akt and eNOS phosphorylation levels resulted increased in WKY homogenates and Calhex significantly blocked this effect. Notably, this did not occur in the SHR. Similarly, vascular smooth muscle cells (vSMCs) stimulation with lower R-568 doses resulted in Akt activation and increased NO production in WKY but not in SHR cells. Interestingly, in these cells this was associated with the absence of the biologically active dimeric form of the CaSR thus potentially contributing to explain the impaired vasorelaxant effect observed in response to R-568 in MVB from SHR compared to WKY. Overall, these findings provide new insight on the mechanisms of action of the calcimimetic R-568 in modulating vascular tone both in physiological and pathological conditions such as hypertension.


Subject(s)
Hypertension/drug therapy , Mesenteric Arteries/drug effects , Muscle, Smooth, Vascular/drug effects , Phenethylamines/pharmacology , Propylamines/pharmacology , Vasodilator Agents/pharmacology , Animals , Aorta/drug effects , Aorta/physiopathology , Cells, Cultured , Dose-Response Relationship, Drug , Hypertension/physiopathology , Male , Mesenteric Arteries/physiopathology , Muscle, Smooth, Vascular/physiopathology , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/metabolism , Tissue Culture Techniques
15.
Pharmacol Res ; 120: 226-241, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28408314

ABSTRACT

The association of obesity and diabetes, termed "diabesity", defines a combination of primarily metabolic disorders with insulin resistance as the underlying common pathophysiology. Cardiovascular disorders associated with diabesity represent the leading cause of morbidity and mortality in the Western world. This makes diabesity, with its rising impacts on both health and economics, one of the most challenging biomedical and social threats of present century. The emerging comprehension of the genes whose alteration confers inter-individual differences on risk factors for diabetes or obesity, together with the potential role of genetically determined variants on mechanisms controlling responsiveness, effectiveness and safety of anti-diabetic therapy underlines the need of additional knowledge on molecular mechanisms involved in the pathophysiology of diabesity. Endothelial cell dysfunction, resulting from the unbalanced production of endothelial-derived vascular mediators, is known to be present at the earliest stages of insulin resistance and obesity, and may precede the clinical diagnosis of diabetes by several years. Once considered as a mere consequence of metabolic abnormalities, it is now clear that endothelial dysfunctional activity may play a pivotal role in the progression of diabesity. In the vicious circle where vascular defects and metabolic disturbances worsen and reinforce each other, a low-grade, chronic, and 'cold' inflammation (metaflammation) has been suggested to serve as the pathophysiological link that binds endothelial and metabolic dysfunctions. In this paradigm, it is important to consider how traditional antidiabetic treatments (specifically addressing metabolic dysregulation) may directly impact on inflammatory processes or cardiovascular function. Indeed, not all drugs currently available to treat diabetes possess the same anti-inflammatory potential, or target endothelial cell function equally. Perspective strategies pointing at reducing metaflammation or directly addressing endothelial dysfunction may disclose beneficial consequences on metabolic regulation. This review focuses on existing and potential new approaches ameliorating endothelial dysfunction and vascular inflammation in the context of diabesity.


Subject(s)
Cardiovascular Diseases/etiology , Diabetes Complications/complications , Endothelium, Vascular/pathology , Inflammation/complications , Obesity/complications , Animals , Anti-Inflammatory Agents/therapeutic use , Cardiovascular Diseases/pathology , Cardiovascular Diseases/prevention & control , Diabetes Complications/drug therapy , Diabetes Complications/pathology , Endothelium, Vascular/drug effects , Humans , Inflammation/drug therapy , Inflammation/pathology , Obesity/drug therapy , Obesity/pathology
16.
World J Gastroenterol ; 22(42): 9333-9345, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27895421

ABSTRACT

AIM: To investigate the mechanisms underlying the potential contribution of the heme oxygenase/carbon monoxide (HO/CO) pathway in the constipating effects of granisetron. METHODS: For in vivo studies, gastrointestinal motility was evaluated in male rats acutely treated with granisetron [25, 50, 75 µg/kg/subcutaneous (sc)], zinc protoporphyrin IX [ZnPPIX, 50 µg/kg/intraperitoneal (ip)] and hemin (50 µmol/L/kg/ip), alone or in combination. For in vitro studies, the contractile neurogenic response to electrical field stimulation (EFS, 3, 5, 10 Hz, 14 V, 1 ms, pulse trains lasting 10 s), as well as the contractile myogenic response to acetylcholine (ACh, 0.1-100 µmol/L) were evaluated on colon specimens incubated with granisetron (3 µmol/L, 15 min), ZnPPIX (10 µmol/L, 60 min) or CO-releasing molecule-3 (CORM-3, 100, 200, 400 µmol/L) alone or in combination. These experiments were performed under co-treatment with or without atropine (3 µmol/L, a muscarinic receptor antagonist) or NG-nitro-L-Arginine (L-NNA, 100 µmol/L, a nitric oxide synthase inhibitor). RESULTS: Administration of granisetron (50, 75 µg/kg) in vivo significantly increased the time to first defecation (P = 0.045 vs vehicle-treated rats), clearly suggesting a constipating effect of this drug. Although administration of ZnPPIX or hemin alone had no effect on this gastrointestinal motility parameter, ZnPPIX co-administered with granisetron abolished the granisetron-induced constipation. On the other hand, co-administration of hemin and granisetron did not modify the increased constipation observed under granisetron alone. When administered in vitro, granisetron alone (3 µmol/L) did not significantly modify the colon's contractile response to either EFS or ACh. Incubation with ZnPPIX alone (10 µmol/L) significantly reduced the colon's contractile response to EFS (P = 0.016) but had no effect on contractile response to ACh. Co-administration of ZnPPIX and atropine (3 µmol/L) abolished the ZnPPIX-mediated decrease in contractile response to EFS. Conversely, incubation with CORM-3 (400 µmol/L) alone increased both the contractile response to EFS at 10 Hz (10 Hz: 71.02 ± 19.16 vs 116.25 ± 53.70, P = 0.01) and the contractile response to ACh (100 µmol/L) (P = 0.012). Co-administration of atropine abolished the CORM-3-mediated effects on the EFS-mediated response. When granisetron was co-incubated in vitro with ZnPPIX, the ZnPPIX-mediated decrease in colon contractile response to EFS was lost. On the other hand, co-incubation of granisetron and CORM-3 (400 µmol/L) further increased the colon's contractile response to EFS (at 5 Hz: P = 0.007; at 10 Hz: P = 0.001) and to ACh (ACh 10 µmol/L: P = 0.001; ACh 100 µmol/L: P = 0.001) elicited by CORM-3 alone. L-NNA co-administered with granisetron and CORM-3 abolished the potentiating effect of CORM-3 on granisetron on both the EFS-induced and ACh-induced contractile response. CONCLUSION: Taken together, findings from in vivo and in vitro studies suggest that the HO/CO pathway is involved in the constipating effects of granisetron.


Subject(s)
Carbon Monoxide/metabolism , Colon/drug effects , Constipation/chemically induced , Defecation/drug effects , Gastrointestinal Motility/drug effects , Granisetron/toxicity , Serotonin Antagonists/toxicity , Acetylcholine/pharmacology , Animals , Colon/metabolism , Colon/physiopathology , Constipation/metabolism , Constipation/physiopathology , Constipation/prevention & control , Dose-Response Relationship, Drug , Electric Stimulation , Heme Oxygenase (Decyclizing)/metabolism , Hemin/pharmacology , In Vitro Techniques , Male , Organometallic Compounds/pharmacology , Protoporphyrins/pharmacology , Rats, Sprague-Dawley , Time Factors
17.
Food Nutr Res ; 60: 28373, 2016.
Article in English | MEDLINE | ID: mdl-26899572

ABSTRACT

BACKGROUND: Green tea catechins seem to contribute toward reducing body weight and fat. OBJECTIVE: We aimed to investigate whether chronic administration of (-)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, reduces weight gain in spontaneously hypertensive rats (SHR), an animal model of metabolic syndrome, by increasing motor activity and/or by altering gastrointestinal motility. DESIGN: Nine-week-old SHR were randomly assigned to two groups and treated by gavage for 3 weeks with vehicle dimethyl sulfoxide or EGCG (200 mg/kg/day). Age-matched Wistar-Kyoto (WKY) control rats were treated with vehicle alone. The effect of chronic administration of EGCG was evaluated on open-field motor activity and on ex vivo colonic and duodenal motility. Moreover, in vitro acute effect of 20-min incubation with EGCG (100 µM) or vehicle was evaluated in colonic and duodenal specimens from untreated WKY rats and SHR. RESULTS: Vehicle-treated SHR were normoglycemic and hyperinsulinemic, and showed a reduction of plasma adiponectin when compared to vehicle-treated WKY rats. In addition, consistent with fasting glucose and insulin values, vehicle-treated SHR were more insulin resistant than age-matched vehicle-treated WKY rats. Chronic treatment for 3 weeks with EGCG improved insulin sensitivity, raised plasma adiponectin levels, and reduced food intake and weight gain in SHR. Vehicle-treated SHR showed increased open-field motor activity (both crossings and rearings) when tested after each week of treatment. The overall hyperactivity of vehicle-treated SHR was significantly reduced to the levels of vehicle-treated WKY rats after 2 and 3 weeks of EGCG treatment. Colonic and duodenal preparations obtained from SHR chronically treated in vivo with EGCG showed reduced responses to carbachol (0.05-5 µM) and increased inhibitory response to electrical field stimulation (EFS, 1-10 Hz, 13 V, 1 msec, 10-sec train duration), respectively. In vitro acute EGCG incubation (100 µM, 20 min) of colonic and duodenum strips obtained from untreated SHR and WKY rats showed a reduced contractile colonic response to a fixed dose of carbachol (1.5 µM) only in SHR with respect to its own vehicle, whereas the inhibitory duodenal response to a fixed EFS frequency (5 Hz) was significantly reduced in both WKY rats and SHR groups with respect to their own vehicle. CONCLUSIONS: These data suggest that EGCG affects body weight gain in rats and this effect seems to be due to the altered intestinal motility and not to increased motor activity.

18.
PLoS One ; 9(2): e88542, 2014.
Article in English | MEDLINE | ID: mdl-24520397

ABSTRACT

INTRODUCTION: The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. METHODS: Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3ß. RESULTS: When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3ß branch of the RISK pathways (p<0.05 vs. iI/R, for both). CONCLUSIONS: Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent losartan seem mainly related on its specific ability to modulate BK2R, and only modestly associated on AT1R blocking properties.


Subject(s)
Heart/drug effects , Ischemic Postconditioning , Losartan/administration & dosage , Losartan/pharmacology , Receptor, Bradykinin B2/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Animals , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Bradykinin/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Heart/physiopathology , Hemodynamics/drug effects , In Vitro Techniques , Irbesartan , Losartan/therapeutic use , Male , Mitogen-Activated Protein Kinases/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/metabolism , Systole/drug effects , Tetrazoles/pharmacology , Tetrazoles/therapeutic use
19.
Am J Physiol Endocrinol Metab ; 302(10): E1171-82, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22374753

ABSTRACT

Rosiglitazone is a thiazolidinedione, a synthetic PPARγ receptor agonist with insulin-sensitizing properties that is used as an antidiabetic drug. In addition to improving glycemic control through actions in metabolic target tissues, rosiglitazone has numerous biological actions that impact on cardiovascular homeostasis. Some of these actions are helpful (e.g., improving endothelial function), whereas others are potentially harmful (e.g., promoting fluid retention). Since cardiovascular morbidity and mortality are major endpoints for diabetes, it is essential to understand how the natural history of diabetes alters the net benefits and risks of rosiglitazone therapy. This complex issue is an important determinant of optimal use of rosiglitazone and is critical for understanding cardiovascular safety issues. We give special attention to the effects of rosiglitazone in diabetic patients with stable coronary artery disease and the impact of rosiglitazone actions on atherosclerosis and plaque instability. This provides a rational conceptual framework for predicting evolving benefit/risk profiles that inform optimal use of rosiglitazone in the clinical setting and help explain the results of recent large clinical intervention trials where rosiglitazone had disappointing cardiovascular outcomes. Thus, in this perspective, we describe what is known about the molecular mechanisms of action of rosiglitazone on cardiovascular targets in the context of the evolving pathophysiology of diabetes over its natural history.


Subject(s)
Coronary Artery Disease/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Thiazolidinediones/administration & dosage , Coronary Artery Disease/mortality , Coronary Artery Disease/physiopathology , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/physiopathology , Disease Progression , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Endothelium, Vascular/physiology , Humans , Hypoglycemic Agents/adverse effects , Risk Assessment , Risk Factors , Rosiglitazone , Thiazolidinediones/adverse effects
20.
Am J Physiol Endocrinol Metab ; 297(3): E568-77, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19491294

ABSTRACT

Hemodynamic actions of insulin depend largely on the hormone's ability to stimulate synthesis and release of endothelial mediators, whose balanced activity ensures dynamic control of vascular function. Nitric oxide (NO), endothelin-1 (ET-1), and reactive oxygen species (ROS) are important examples of endothelial mediators with opposing properties on vascular tone, hemostatic processes, and vascular permeability. Reduced NO bioavailability, resulting from either insufficient production or increased degradation of NO, characterizes endothelial dysfunction. In turn, endothelial dysfunction predicts vascular complications of metabolic and hemodynamic disorders. In the cardiovascular system, insulin stimulates the production and release of NO, ET-1, and ROS via activation of distinct intracellular signaling pathways. Under insulin-resistant conditions, increased insulin concentrations and/or impaired insulin-signaling pathways in the vasculature may contribute to imbalance in secretion of endothelial mediators that promote pathogenesis of vascular abnormalities. This short review describes signaling pathways involved in insulin-stimulated release of NO, ROS, and ET-1 and suggests possible molecular mechanisms by which abnormal insulin signaling may contribute to endothelial dysfunction.


Subject(s)
Blood Vessels/physiology , Cardiovascular Diseases/physiopathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Insulin/physiology , Animals , Blood Vessels/drug effects , Blood Vessels/physiopathology , Humans , Insulin/pharmacology , Models, Biological , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...