Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(2): 516-26, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24121442

ABSTRACT

This paper is a joint experimental and theoretical approach concerning a molecule deposited on a large argon cluster. The spectroscopy and the dynamics of the deposited molecule are measured using the photoelectron spectroscopy. The absorption spectrum of the deposited molecule shows two solvation sites populated in the ground state. The combined dynamics reveals that the population ratio of the two sites is reversed when the molecule is electronically excited. This work provides the timescale of the corresponding solvation dynamics. Theoretical calculation supports the interpretation. More generally, close examination of the short time dynamics (0-6 ps) of DABCO···Ar(n) gives insights into the ultrafast relaxation dynamics of molecules deposited at interfaces and provides hence the time scale for deposited molecules to adapt to their neighborhoods.

2.
J Phys Chem A ; 115(34): 9620-32, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21770416

ABSTRACT

The spectroscopy of the ZrF radical, produced by a laser ablation-molecular beam experimental setup, has been investigated for the first time using a two-color two-photon (1 + 1') REMPI scheme and time-of-flight (TOF) mass spectrometry detection. The region of intense bands 400-470 nm has been studied, based upon the first spectroscopic observations of the isovalent ZrCl radical by Carroll and Daly. The overall spectrum observed is complex. However, simultaneous and individual ion detection of the five naturally occurring isotopologues of ZrF has provided a crucial means of identifying band origins and characterization via the isotopic shift, δ(iso), of the numerous vibronic transitions recorded. Hence, five (0-0) transitions, of which only two were free of overlap with other transitions, have been identified. The most intense (0-0) transition at 23113 cm(-1) presented an unambiguously characteristic RQP rotational structure. From rotational contour simulations of the observed spectra, the nature of the ground electronic state is found to be unambiguously of (2)Δ symmetry, leading to the assignment of this band as (0-0) (2)Δ â† X(2)Δ at 23113 cm(-1). A set of transitions (1-0) (2)Δ â† X(2)Δ at 22105 cm(-1) and (2-0) (2)Φ â† X(2)Δ at 22944 cm(-1) involving the X(2)Δ state has also been identified and analyzed. Furthermore, a second series of transitions with lesser intensity has also been related to the long-lived metastable (4)Σ(-) state: (3-0) (4)Π(-1/2) ← (4)Σ(-) at 21801 cm(-1), (2-0) (4)Π(-1/2) ← (4)Σ(-) at 21285 cm(-1) and (2-0) (4)Σ(-) ← (4)Σ(-) at 23568 cm(-1). These spectroscopic assignments are supported by MRCI ab initio calculations, performed using the MOLPRO quantum chemistry package, and show that the low-lying excited states of the ZrF radical are the (4)Σ(-) and (4)Φ states lying at 2383 and 4179 cm(-1) respectively above the ground X(2)Δ state. The difference in the nature of ground state and ordering of the first electronic states with TiF (X(4)Φ)(2-4) and ZrCl,(5) respectively, is examined in terms of the ligand field theory (LFT)(7) applied to diatomic molecules. These results give a precise description of the electronic structure of the low lying electronic states of the ZrF transition metal radical.


Subject(s)
Chemistry, Physical , Halogens/chemistry , Transition Elements/chemistry , Electrons , Lasers , Ligands , Molecular Structure , Photons , Quantum Theory , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thermodynamics , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...